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Abstract— Monocular depth estimation is an effective ap-
proach to environment perception due to simplicity of the sensor
setup and absence of multisensor calibration. Deep learning
has enabled accurate depth estimation from a single image by
exploiting semantic cues such as the sizes of known objects and
positions on the ground plane thereof. However, learning-based
methods frequently fail to generalize on images collected with
different vehicle-camera setups due to the induced perspective
geometry bias. In this work, we propose an approach for camera
parameters invariant depth estimation in autonomous driving
scenarios. We propose a novel joint parametrization of camera
intrinsic and extrinsic parameters specifically designed for
autonomous driving. In order to supplement the neural network
with information about the camera parameters, we fuse the
proposed parametrization and image features via the novel
module based on a self-attention mechanism. After thorough
experimentation on the effects of camera parameter variation,
we show that our approach effectively provides the neural
network with useful information, thus increasing accuracy and
generalization performance.

I. INTRODUCTION
Scene depth is a key information in many three di-

mensional reconstruction and perception tasks in robotics,
autonomous driving, and virtual reality. While fusion of
different sensor modalities increases robustness and accu-
racy, depth estimation from camera data is effective due to
the richness of information and relative simplicity of the
sensor setup. Traditionally, scene depth is estimated within
geometric Structure-from-Motion or Visual Simultaneous
Localization and Mapping frameworks. Sparse or dense cor-
respondences are established across different camera poses,
enabling triangulation and subsequent optimization. How-
ever, such systems usually calculate depth for a limited
set of sparse correspondences with robustness issues due
to challenging scenarios such as occlusions and textureless
regions. Given that, deep learning-based methods have been
increasingly used for monocular depth estimation (MDE).
Even though depth estimation from a single image is an ill-
posed problem, neural networks leverage large amount of
data in order to learn semantic and geometric cues, such as
the size of known objects or position on the ground plane
[1], and use them to infer the scene depth.

Early MDE works [2], [3] establish a standard super-
vised learning procedure to directly regress a depth map
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within an encoder-decoder architecture, often with residual
connections. Various attempts have been made in order
to improve the results, with addition of recurrent neural
networks [4]–[6], conditional random fields [7]–[10] or ad-
versarial training [11], [12] into the architecture. Recently,
with advancements of transformers [13] in vision tasks [14],
many methods take advantage of the global receptive field
of the transformer that naturally complements locality of
the convolutions, thus consequently achieving state-of-the-
art results [15]–[17]. However, the main drawback of such
supervised methods is the necessity of ground truth data
acquisition, which is often sparse and difficult to collect.
This constrains the training data to a narrow distribution
leading to overfitting and inaccurate generalization on unseen
environments. To that end, self-supervised methods [18]–
[21] use view synthesis of nearby frames as a supervision
signal, removing the requirement of ground truth data during
training.

Even though self-supervised methods make data collection
within distinctive environments relatively straightforward,
effects of different camera extrinsic and intrinsic parameters
during test time are often ignored. As the training data
is usually collected with a single vehicle-camera setup,
networks tend to overfit due to the perspective geometry bias
in gathered data [22]. Embedding of known focal length [23],
camera intrinsics [24] or camera extrinsics [25] within neural
networks, along with usage of diverse synthetic training data,
has shown to improve generalization capabilities. Although
synthetic data has been widely used for MDE in auto-
motive scenarios [26]–[29], variation in camera parameters
has been left largely unexplored. In theory, if trained on
diverse enough real-world data containing various camera
parameters, the network could learn to estimate depth for the
camera parameters within the training set; however, we argue
that the process of data acquisition with sufficiently diverse
camera parameters in distinctive environments is infeasible,
which is why we use synthetic data in the present work.

In this paper, we propose a novel approach for camera
parameters invariant MDE for automotive driving scenarios.
We demonstrate the effects of the camera parameters varia-
tion in MDE and design a novel architecture which enhances
the generalization capabilities of the system. We test and
train our method on synthetic data, while designing the
architecture to support further work for domain adaptation
to real data. Our main contributions are as follows:
• a novel parametrization of known camera intrinsic and

extrinsic parameters as depth of the ground plane, which
has a strong semantic and geometric meaning in MDE
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Fig. 1: Illustration of the proposed architecture. Our system embeds camera parameters as depth of the ground plane and
learns depth that generalizes for various camera-car setups. CPE refers to the Camera Parameters Embedding described in
Section II, while CADE refers to the Camera Adaptive Depth Estimation described in Section III.

for autonomous driving scenarios
• a network architecture with embedded parametrization

as visualized in Fig. 1, specifically designed for general-
ization and further work in sim2real domain adaptation

• a large-scale annotated autonomous driving dataset
within the CARLA simulator [30], created due to the
unavailability of data with sufficiently diverse camera
parameters2

• thorough experimentation on the effects of parameter
variation and efficacy of the proposed approach.

II. PROPOSED CAMERA PARAMETERS EMBEDDING

Autonomous driving datasets such as the KITTI [31],
Oxford RobotCar [32] or Cityscapes [33] frequently feature
a single vehicle-camera setup. This means that correct depth
values for certain pixels are almost identical across different
images, e.g., on the ground plane. Even though convolution
is an inherently positionally equivariant operation, convolu-
tional neural networks tend to implicitly learn absolute po-
sition information from commonly used padding operations
[34]. Additionaly, MDE networks have been shown to use
the ground-plane contact point for object depth estimation
[1].

In order for MDE to be practically used in automotive
scenarios, depth estimation should be accurate for different
vehicle-camera setups. However, if camera parameters during
inference differ from the parameters used in training, depth
estimation accuracy degrades significantly. For example,
networks learn from the training data that the pixel at
a particular position in the image tends to have certain
depth value, which remains largely the same throughout the
dataset. However, if the camera parameters are changed, this
assumption breaks. Fig. 2 demonstrates the effects that cam-
era parameters variation has on depth estimation accuracy.
Changes in camera pitch, camera height, and vertical field

2Dataset is publicly available at
https://zenodo.org/record/7899804#.ZFT0oJFBzJV

of view (which also changes vertical focal length) during
inference, compared to the training setup, significantly affect
depth estimation accuracy, especially on the ground plane.
On other hand, horizontal field of view and focal length
changes do not significantly influence the estimation, as long
as the context does not change dramatically.

In this work, we target the most plausible variations in
vehicle-camera setups which can disturb depth estimation:
camera height, camera pitch and vertical focal length. In
order to learn metrically accurate depth with varying focal
lengths, knowledge of the focal length should be embedded
in the network due to inherent ambiguity between the focal
length and depth [23], [24]. Additionally, while the network
could learn the effects of camera height and pitch on the
estimated depth, if trained with sufficiently diverse data, em-
bedding of extrinsic parameters was shown to be beneficial
[25]. Given that, we choose to embed all the three parameters
in the network. To do so, for every pixel coordinate (u, v) we
calculate the depth G(u, v) at which the optical ray intersects
the ground plane via the following constraints

nTRT(α)p+ h = 0,

p = G(u, v)
[ u−cu

fu
v−cv
fv

1
]T
,

(1)

where h is the camera height, R(α) is the rotation matrix
for camera pitch α, n is the ground plane normal, and
(fu, fv), (cu, cv) represent the camera focal length and prin-
cipal point, respectively. With the assumption of ideal ground
normal n = [0,−1, 0]T , depth G(u, v) can be calculated
as a function of (α, h, fv, cv). In this work, we set the
principal point at the center of the image plane, which is a
fair assumption for most cameras. Our embedding function
is thus a mapping

(α, h, fv) 7→ G ∈ [0,M ]H×W , (2)

where M is maximum depth specific to the dataset, and
(H,W ) are dimensions of the image. In Fig. 3 we show
the visualization of our camera parameter embedding G for
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Fig. 2: Depth estimation results given common variations of the camera parameters compared to the training setup.

(a) Baseline (b) Downward pitch

(c) Smaller height (d) Larger focal length

Fig. 3: Visualization of the embedded camera parameters as
ground plane depth G.

different camera parameters. Variations of camera parame-
ters (namely camera pitch, camera height and focal length)
compared to the baseline are reflected in the embeddings,
which provide the network with useful a-priori available
information about the camera setup.

Our motivation for such a choice of camera parameters
embedding is threefold:
• depth of the ground plane is a common and unique

parametrization for camera pitch, camera height, and
focal length, i.e., the mapping in (2) is injective

• embedding of G gives the neural network useful po-
sitional information, i.e., the network is explicitly in-
formed about the expected depth for current camera
parameters at a certain pixel position, if the ground
plane is not occluded

• neural network can be forced to estimate depth as a
function of G, which leads to learning more robust
features and better generalization accuracy for unseen
camera parameters.

III. PROPOSED NETWORK ARCHITECTURE

Depth estimation networks often follow a standard
encoder-decoder architecture with residual connections be-

tween encoder and decoder layers. Encoder learns spatially
coarse features of higher dimensions, which are then con-
tinually upsampled towards original image resolution in
the decoder. Our method is designed to work with arbi-
trary encoder-decoder architecture. While recent works use
transformers for feature extraction and fusion [15]–[17],
we choose to use a ResNet18 [35] encoder and a decoder
combining convolutional and upsampling layers, thus recov-
ering the feature map F ∈ RC×H×W . Instead of directly
regressing the depth map D from F, we forward it along
with the map of embedded camera parameters G into the
Camera Adaptive Depth Estimation (CADE) module.

A. CADE module

CADE transforms image features and camera parameters
embedded as ground plane depth into the depth map, i.e., it
performs the mapping (F,G) 7→ D ∈ [0,M ]H×W . We fuse
G and F inside a novel transformer architecture visualized
in Fig. 4, as we want to exploit the global receptive field of
the attention mechanism.

Firstly, we rearrange F and G into

Z′F =

z
′
f1
...
z′fN

 ∈ RN×D
′
f ,Z′G =

z
′
g1
...
z′gN

 ∈ [0,M ]N×D
′
g ,

(3)
where N = HW

p2 , D′f = Cp2, D′g = p2, with p being patch
size. After layer normalization, these are then processed
through a linear layer with addition of learnable positional
embedding, resulting in sets of image feature tokens ZF ∈
RN×Df and ground plane depth tokens ZG ∈ RN×Dg :

ZF = Z′FWF + pF,WF ∈ RD
′
f×Df , (4)

ZG = Z′GWG + pG,WG ∈ RD
′
g×Dg . (5)

Afterwards, we proceed with calculation of query, key and
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Fig. 4: Structure of the CADE module. Ground plane depths ZG are processed through d successive transformer layers,
with image features ZF used in the calculation of attention weights.

value matrices needed for attention calculation:

Q = ZFWQ (6)
K = ZFWK (7)
V = ZGWV (8)

where WQ,WK ∈ RDf×Dh and WV ∈ RDg×Dh are
projection matrices. Attended output is determined as

A = softmax
(
QKT

√
N

)
V, (9)

which is calculated for multiple heads and then fused via
the linear layer. Notice how we calculate queries and keys
from features tokens and values from ground plane depth
tokens. This means that our attended output for particular
token is a weighted function of ground plane depth tokens,
with weights calculated as a self-attention of feature tokens.

We propagate tokens ZG through d successive trans-
former layers consisting of multihead attention (MHA) and
multilayer perceptron layers (MLP), along with residual
connections where Z1

G is initialized via (5):

ZiG = LayerNorm(ZiG), (10)

Qi = ZFW
i
Q,K

i = ZFW
i
K,V

i = ZiGWi
V, (11)

ZiG = MHA(Q,K,V) + ZiG, (12)

ZiG = LayerNorm(ZiG), (13)

Zi+1
G = MLP(ZiG) + ZiG. (14)

Notice how through all CADE layers we use feature tokens
ZF only in calculation of attention weights. Depth estimation
is thus forced to be a function of the embedded camera
parameters G, with F serving as a clue on how to properly
combine embedding G into D. CADE module is purpose-
fully appended at the end of the network, which makes F
independent of G. In such a manner, network is incentivized
to learn F that are invariant to different camera parameters.

Finally, we use Rearrange(·) : RN×Dg → RC′×H×W

and a final convolutional layer with a sigmoid activation to

Dataset Size Description

B 20000 α = −5, h = 1.5, fv = 570

Uα 10000 α ∼ U(−15, 5), h = 1.5, fv = 570

Uh 10000 h ∼ U(1, 2), α = −5, fv = 570

Ufv 10000 fv ∼ U(260, 880), α = −5, h = 1.5

Uα,h,fv 40000 (α, h, fv) ∼ U(−15, 5)× U(1, 2)× U(260, 880)

Dα,h,fv 40000 α ∈ {−15, 5, 5}, h ∈ {1, 1.5, 2},
fv ∈ {260, 570, 880}

TABLE I: Camera parameter specifications used in col-
lected datasets. B – baseline dataset, parameters are constant
throughout the dataset, Uα,Uh,Ufv – single varying param-
eter sampled from continuous uniform distribution, Uα,h,fv
– all varying parameters sampled from continuous uniform
distribution, Dα,h,fv – all varying parameters sampled from
discrete uniform distribution of 3 possible values. Values
for α, h, fv are expressed in degrees, meters and pixels
respectively.

regress depth map D ∈ [0,M ]H×W :

D = σ(Conv(Rearrange(ZdG))) ∗M. (15)

For the training loss, we follow [15] and use Scale-
Invariant loss (SI). With the logarithmic distance gi =
log(d̂i) − log(di) between ground truth depth d̂i and esti-
mated depth di at pixel location i, SI loss is:

L = α

√√√√ 1

|D|
∑
i

g2i −
λ

|D|2

(∑
i

gi

)2

, (16)

where we use λ = 0.85 and α = 10 as in [15].

IV. EXPERIMENTAL RESULTS

A. Datasets

Due to unavailability of autonomous driving data with
sufficiently diverse camera parameters, we created our own
dataset using the CARLA simulator [30]. We simulate au-
tonomous driving scenarios within urban, rural, and highway
environments across 8 different maps Town01 - Town07 and



Method Training Testing Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

a) Baseline B B 0.046 0.482 4.541 0.108 0.959 0.987 0.995
CPE + CADE B B 0.044 0.475 4.552 0.110 0.961 0.986 0.995

b) Baseline B Uα,h,fv 0.261 2.076 7.478 0.297 0.547 0.846 0.960
Baseline Uα,h,fv Uα,h,fv 0.064 0.437 3.549 0.102 0.960 0.991 0.996

CPE + CADE Uα,h,fv Uα,h,fv 0.039 0.387 3.382 0.085 0.970 0.991 0.997
c) Baseline B Uα 0.244 1.248 5.748 0.198 0.699 0.931 0.989

Baseline Uα Uα 0.041 0.310 3.445 0.078 0.973 0.991 0.997
CPE + CADE Uα Uα 0.035 0.301 3.410 0.076 0.975 0.992 0.997

d) Baseline B Uh 0.214 1.245 6.035 0.232 0.666 0.924 0.988
Baseline Uh Uh 0.038 0.319 3.600 0.085 0.971 0.991 0.997

CPE + CADE Uh Uh 0.035 0.312 3.581 0.083 0.972 0.992 0.997
e) Baseline B Ufv 0.254 1.746 7.286 0.268 0.563 0.868 0.987

Baseline Ufv Ufv 0.040 0.351 3.722 0.088 0.972 0.990 0.997
CPE + CADE Ufv Ufv 0.035 0.353 3.647 0.084 0.972 0.991 0.997

f) Baseline Dα,h,fv Uα,h,fv 0.102 0.633 4.655 0.148 0.889 0.987 0.996
CPE + CADE Dα,h,fv Uα,h,fv 0.067 0.458 3.920 0.110 0.945 0.991 0.997

TABLE II: Results of various model and dataset configurations. Baseline refers to the standard encoder-decoder architecture,
with ResNet 18 encoder and decoder from [20], where depth D is directly regressed from image features F, while CPE +
CADE refers to addition of our contributions. Results are expressed in standard MDE metrics [20], red – lower is better,
blue – higher is better.

Town10HD that include highly detailed and realistic textures.
The maps are populated with a diverse set of traffic actors,
which are then autonomously controlled while respecting the
traffic rules.

In order to capture the training and testing data, we mount
RGB and depth cameras in a way that no part of the car
is within the field of view of the camera. Advanced RGB
camera parameters such as distortions and postprocessing
effects are adjusted to mimic the KITTI dataset [31] as
close as possible. Camera sensors are repeatedly destroyed
and reinitialized with new extrinsic and intrinsic parameters,
thus avoiding the memory difficulties which are present
with multiple camera sensors working at the same time. We
collect several datasets with different distributions of camera
parameters, as described in Table I.

B. Implementation details

As our method is adaptable for various encoder-decoder
architectures, we use a simple convolutional residual net-
work. Our encoder is a ResNet 18 network which encodes
image features at a H

32 ×
W
32 resolution. Decoder then succes-

sively upsamples the features in 5 stages, each consisting of
a 3x3 kernel convolution which fuses encoder features via
skip connection and an upsampling layer followed by another
convolutional layer. Finally, decoder outputs image features
F ∈ RC×H×W , where we use C = 16, H = 320,W =
1024.

For our CADE module, we choose to use a light architec-
ture in order to prevent a significant increase in computation
time and memory consumption. We use a standard patch
size p = 16, with inner embedding dimensions Dg = 1024
and Df = 4096. We calculate the MHA with 8 heads and
a head dimension Dh = 64, which is then followed by a
MLP with one hidden layer which increases the embedded
dimension by two times. In order to keep our CADE module
lightweight, we choose d = 2 for a number of transformer
layers. Finally, following the standard practice in depth

estimation [20], we estimate depth up to a maximum value
M = 80m.

We train our network with an Adam optimizer [36] with
a batch size 12. We decrease the learning rate linearly from
4 × 10−5 to 4 × 10−6. All networks are trained and tested
on a single Nvidia RTX A5000 GPU.

C. Results

We conduct a thorough experimentation on the effect of
camera parameter variation and efficacy of our approach.
In Table II we present results for various combinations of
methods and dataset configurations. In order to test the
generalization of each approach, for each dataset we create
a 90%/10% training and testing split.

First of all, in Table II a) we perform the ablative ex-
periments on the baseline dataset, where we both train and
test the networks on the data collected with a single vehicle-
camera setup. As expected, despite the increase of the model
complexity due to the addition of our contributions, usage
of CPE and CADE does not improve performance compared
to the standard encoder-decoder architecture, since ground
plane depth G fused in CADE does not supplement the
network with useful information. This is a desired behavior,
considering that the camera parameters are constant through-
out the dataset. Ground plane depth is mostly the same across
all images, thus enabling the baseline model to easily learn
the information which is otherwise supplemented with G in
our approach.

Afterwards in Table II b) we test the performance on the
dataset with varying camera parameters Uα,h,fv . Naturally,
baseline method trained on a dataset with a constant vehicle-
camera setup performs poorly since it is biased to a partic-
ular perspective geometry induced in the training data. On
the contrary, baseline method trained on Uα,h,fv performs
surprisingly well, with good generalization performance on
unseen images. This shows that, when presented with suf-
ficiently diverse perspective geometry, network can exploit



Image Ground
truth

Baseline
estimation

CPE + CADE
estimation

Baseline
 error

CPE + CADE
error

0.00

0.02

0.04

0.06

0.08

0.10

Fig. 5: Results of MDE trained and tested on the Uα,h,fv dataset with visualization of absolute relative error. Fusion
of embedded camera parameters within CADE significantly reduces the absolute relative error compared to the baseline,
especially on the ground plane.

Method Abs Rel Sq Rel RMSE RMSE log

Early fusion 0.051 0.401 3.401 0.090

Mid fusion 0.050 0.397 3.402 0.089

Late fusion 0.061 0.412 3.622 0.102

CADE 0.039 0.387 3.382 0.085

TABLE III: Results of the ablation experiments trained
and tested on Uα,h,fv , with fusion of G into convolutional
channels at a certain point. Early fusion – fusion in the
first encoder layer, Mid fusion – fusion in skip connections
between encoder and decoder, Late fusion – fusion in last
decoder layer.

semantic cues to infer depth for varying camera parameters.
However, the accuracy of the baseline network is signif-
icantly lower compared to the proposed approach. Fusion
of embedded camera parameters within the CADE module
notably improves the results for all MDE metrics, proving
the usefulness of information encoded in ground plane depth
G, and efficacy of its fusion within the CADE module.
Figure 5 shows significant reduction in absolute relative
error compared to the baseline, especially for inconsistent
estimations on the ground plane.

In order to examine the generalization capability for each
camera parameter separately, in Table II c) d) e) we repeat the
same experiment while selectively varying only one camera
parameter throughout the dataset. Again, while the model
trained on a single vehicle-camera setup performs poorly,
baseline network can learn to generalize when presented
with diverse data in the training set. However, in contrast
to results in Table II b), fusion of camera parameters in
CADE module does not significantly improve the results.
Since only one parameter is varied, network can learn to
focus on semantic cues specific to that camera parameters,
thus effectively reducing the need for embedding of G.

In Table II f) we examine the ability of our approach to
generalize for camera parameters not present in the training
distribution. To do so, for training we use a sparse discrete
distribution with 3 possible samples for each parameter,

positioned at the tail ends and the mean of the continu-
ous uniform distribution Uα,h,fv . In such manner, network
should learn to meaningfully predict the depth for camera
parameters between those discrete samples. We show that
our approach learns to generalize more effectively than the
baseline, which means that the network successfully learns
geometric relationship between embedded camera parame-
ters G and scene depth. To that end, our approach is feasible
to be utilized with real-world data, since the collection of
data with distribution similar to Dα,h,fv is feasible. However,
increase in accuracy is not as prominent as in Table II b),
which means that the semantic cues, such as the horizon
level, when varied throughout the training dataset provide
useful information for training of camera invariant depth
estimation, even when the network is supplemented with
embedded camera parameters G.

Finally, we assess the performance of various fusion
methods for embedded camera parameters G in Table III.
Early and mid fusion are similar to [25] and [24] respectively,
but with different choice of embedded camera parameters
and embedding function. The most meaningful result is
the difference between performance of late fusion within
convolutional layers and our CADE module. Even though
the fusion happens at the same point in the network, CADE
achieves better results by taking advantage of the global
receptive field of self-attention, and by strict enforcement
of estimating depth D as a function of G.

V. CONCLUSION AND FURTHER WORK

In this paper we have presented an approach for camera in-
variant monocular depth estimation for automotive scenarios.
After detailed examination on the effects of varying camera
parameters on depth estimation performance, we designed
a novel camera parameters embedding procedure in order
to supplement the network with useful information about
the perspective geometry and to force the network to learn
depth estimation as a function of embedded parameters, thus
effectively enabling learning of camera invariant features.
The proposed embedding is fused with image features within



a novel module that exploits the global receptive field of
the self-attention. We assess the accuracy of the proposed
approach on various datasets with different camera extrinsic
and intrinsic parameters distributions, collected within a
simulated automotive environment. We show that the em-
bedding provides useful information about the perspective
geometry and enables better generalization on unseen data.
Our method is specifically designed for further work in
domain adaptation, where we aim to achieve camera invariant
depth estimation on real-world data.
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