
1

GenDepth: Generalizing Monocular Depth
Estimation for Arbitrary Camera Parameters via

Ground Plane Embedding
Karlo Koledić, Luka Petrović, Ivan Petrović, Ivan Marković1.

Abstract—Learning-based monocular depth estimation leverages geometric priors present in the training data to enable metric depth
perception from a single image, a traditionally ill-posed problem. However, these priors are often specific to a particular domain, leading
to limited generalization performance on unseen data. Apart from the well studied environmental domain gap, monocular depth
estimation is also sensitive to the domain gap induced by varying camera parameters, an aspect that is often overlooked in current
state-of-the-art approaches. This issue is particularly evident in autonomous driving scenarios, where datasets are typically collected
with a single vehicle-camera setup, leading to a bias in the training data due to a fixed perspective geometry. In this paper, we
challenge this trend and introduce GenDepth, a novel model capable of performing metric depth estimation for arbitrary vehicle-camera
setups. To address the lack of data with sufficiently diverse camera parameters, we first create a bespoke synthetic dataset collected
with different vehicle-camera systems. Then, we design GenDepth to simultaneously optimize two objectives: (i) equivariance to the
camera parameter variations on synthetic data, (ii) transferring the learned equivariance to real-world environmental features using a
single real-world dataset with a fixed vehicle-camera system. To achieve this, we propose a novel embedding of camera parameters as
the ground plane depth and present a novel architecture that integrates these embeddings with adversarial domain alignment. We
validate GenDepth on several autonomous driving datasets, demonstrating its state-of-the-art generalization capability for different
vehicle-camera systems.

Index Terms—Monocular depth estimation, Domain generalization, Sim2real adaptation, Camera parameters, Autonomous driving,
Ground plane

✦

1 INTRODUCTION

A CCURATE 3D perception is one of the fundamental
challenges in computer vision, with numerous ap-

plications in fields such as robotics, virtual reality and
autonomous driving. Due to the depth ambiguity of the
monocular camera systems, traditional approaches, includ-
ing Structure-from-Motion or Visual SLAM, estimate 3D
structure via subsequent correspondence matching and tri-
angulation. However, these solutions are prone to errors
in challenging conditions such as occlusions or textureless
regions and also require a complicated setup with multi-
sensor calibration.

To remedy these issues, learning-based Monocular
Depth Estimation (MDE) models use a large amount of
data to directly regress per-pixel depth from a single image,
usually by exploiting learnable semantic and geometric
cues, such as the size of known objects or their position on
the ground plane. These models are consequently heavily
reliant upon environments and objects present in the train-
ing data. Given that, supervised methods [1], [2], [3], [4],
[5], [6], [7], [8], [9], which require expensive and rigorously
obtainable ground-truth data, are often limited to a narrow
distribution of environments, thereby adversely affecting
the generalization performance. On the other hand, self-
supervised methods [10], [11], [12], [13], [14], [15], [16],

1Authors are with University of Zagreb Faculty of Electrical Engineering
and Computing, Laboratory for Autonomous Systems and Mobile Robotics,
Zagreb, Croatia {name.surname@fer.hr}.
This research has been funded by the H2020 project AIFORS under Grant
Agreement No 952275.

[17] offer a promising alternative, by constructing a su-
pervision signal via view synthesis of nearby frames. This
alleviates the issue of ground-truth data acquisition and
enables scalable deployment across diverse environments
and scenarios.

Self-supervised learning simplifies the gathering of data
in various environments. However, the impact of different
extrinsic and intrinsic camera parameters is frequently over-
looked during testing. This issue is particularly evident in
autonomous driving scenarios. In such cases, datasets are
often collected with a single vehicle-camera setup, resulting
in all images being captured from the same view relative to
the ground plane. Models naturally overfit to this perspec-
tive geometry bias in the training data and exhibit critical
performance degradation when inferring depth for images
captured with different vehicle-camera setups [19].

The generation of synthetic data with diverse camera
parameters, along with embedding of camera extrinsics [20],
intrinsics [21] or focal length [22], has been proposed to
solve this issue. However, these methods do not provide
solutions that are applicable to a real-world scenario with
an arbitrary vehicle-camera setup. Another line of work
focuses on relative depth estimation [23], [24], [25], [26], [27],
[28], [29], [30], which usually uses large-scale diverse stereo
image or video data from the internet. Such an approach
facilitates generalization, but abstracts away camera pa-
rameters during training, hence enabling depth estimation
only up to an unknown scale and shift. In addition, these
methods rely entirely on the relative object size cue and

ar
X

iv
:2

31
2.

06
02

1v
1

 [
cs

.C
V

]
 1

0
D

ec
 2

02
3

2

DDAD Argoverse Waymo

M
on

od
ep

th
2

iD
is

c
G

en
de

pt
h

Fig. 1: Inferred depth maps and corresponding error maps when evaluated on datasets unseen during training. Traditional
methods such as Monodepth2 [10] and iDisc [18] overfit to the perspective geometry bias in the training data, resulting in
poor performance for images captured with different vehicle-camera setups. In contrast, GenDepth estimates the accurate
metric depth for arbitrary camera parameters without retraining, fine-tuning or post-processing, using only a single
real-world dataset without ground-truth labels.

ignore the constraint between the fixed camera system and
the ground plane, which is present in autonomous driving
scenarios.

We believe that generalization for different vehicle-
camera setups is an indispensable requirement for the scal-
able and applicable deployment of MDE in autonomous
driving. Without such a capability, the models would need
to be retrained or fine-tuned whenever a vehicle-camera
setup is changed compared to the one used in training.
This could either be due to the use of a camera with
different intrinsic parameters or a discrepancy in the ex-
trinsic parameters due to the mounting on the new vehicle
model. In addition, the parameters can also change during
vehicle operation due to physical shocks, impacts or extreme
temperature fluctuations.

Motivated by the lack of MDE methods that possess such
generalization capability, in this paper we propose Gen-
Depth, a monocular depth estimation method specifically
targeted for generalization to arbitrary vehicle-camera sys-
tems. The GenDepth method enables generation of accurate
metric depths across various real-world datasets with dif-
ferent vehicle-camera setups without the need for any form
of retraining, fine-tuning or post-processing. To the best of
our knowledge, it is the first method with such capabilities,
thereby advancing the scalability and applicability of MDE
in autonomous driving. To derive the GenDepth method
we first thoroughly analyze the effects of camera param-
eter variation and identify the most plausible variations in
vehicle-camera setup which can degrade MDE performance.
Then, due to the shortage of data with sufficiently diverse
camera parameters, we create a bespoke dataset in the
CARLA simulator [31], which enables us to learn accurate
depth for numerous vehicle-camera setups in the synthetic

environment. Naturally, due to the significant sim2real gap,
the performance of such a model trained exclusively on
synthetic images degrades substantially when confronted
with real-world data. To that end, we introduce a novel
architecture that carefully incorporates camera parameters
embeddings in conjunction with adversarial feature align-
ment. We show that the GenDepth method learns depth that
is equivariant to the variations of the camera parameters
on synthetic data, while simultaneously adapting to the
environmental features of the target real-world data. As
visualized in Fig. 1, this results in accurate metric depth
estimation for several real-world datasets unseen during
training.

To summarize, in this paper we present the following
contributions:

• an in-depth analysis and discussion of the effect of
variations in camera parameters on MDE,

• a large-scale annotated autonomous driving dataset
collected in the CARLA simulator, which includes a
wide distribution of vehicle-camera setups,

• a novel embedding of camera parameters, designed
to enhance generalization and learn domain invari-
ant features,

• a novel architecture with adversarial feature align-
ment, which in conjunction with careful incorpo-
ration of camera parameters embeddings, enables
domain generalization to the real-world datasets un-
seen during training,

• a thorough evaluation on numerous autonomous
driving datasets, which validates our approach and
exhibits the ability of our method to estimate metric
depth for arbitrary vehicle-camera setups.

3

2 RELATED WORK

2.1 Monocular depth estimation
Learning based monocular depth estimation was initially
proposed as a dense estimation task, trained with super-
vised loss via ground-truth data obtained by reprojection of
LiDAR scans [1]. Inspired by the popularity of U-net-like
architectures in semantic segmentation [32], many works
have incorporated a similar encoder-decoder architecture
with skip connections [2], [10], [12], [17]. Additionally, the
inclusion of conditional random fields [5], [7], [33], [34],
recurrent neural networks [3], [4], and adversarial training
[35], [36] has been proposed to improve the accuracy. Re-
cently, with increased usage of transformers in computer
vision [37], many works have integrated self-attention into
the architecture [8], [9], [18], [38], enabling the modeling of
long-range dependencies and thus being naturally comple-
mentary to the locality of convolutions. Finally, foundation
models, which learn both low-level and high-level visual
concepts from large-scale internet data, have been success-
fully applied to the problem of monocular depth estimation
[39], [40], achieving state-of-the-art results.

A fundamental issue with supervised methods is the
requirement of ground-truth depth data, which necessitates
an expensive sensor setup with challenging multi-sensor
calibration. To improve scalability, self-supervised meth-
ods construct the training signal from multiple images of
spatially overlapping camera frustums [10], [11], [12], [13],
[14], [15], [16], [17]. The easiest way to achieve this is by
stereo reconstruction [41], [42], which enables learning of
metric depths due to the known stereo camera baseline.
In addition to the depth estimation network, SfMLearner
[17] proposed using a separate network for relative pose
estimation of nearby video frames, enabling view synthe-
sis and joint training of both networks via reconstruction
error. Further works explore the addition of stereo frames
[10], [11], IMU [43], or velocity measurements [14] in or-
der to solve the scale ambiguity problem of monocular
video. Inspired by the success of transformer in supervised
approaches, Monovit [16] introduces parallel self-attention
and convolutional layers during feature encoding. Recently,
PlaneDepth [15] has achieved state-of-the-art results by ap-
proximating the scene as a mixture of orthogonal planes,
which distinctively improves the accuracy in highly planar
regions.

2.2 Domain generalization for monocular depth estima-
tion
The goal of domain generalization is to achieve satisfactory
performance on an unseen test domain while training on
various source domains, which may often be indetermi-
nately different from the test domain. To achieve this, rela-
tive depth estimation approaches train networks on diverse
large-scale internet data collected across different environ-
ments and camera systems [23], [24], [25], [26], [27], [28],
[29], [30]. In a seminal work, Chen et al. [23] introduced an
ordinal relations-inspired loss, which instructs the network
to focus on relative distances, thus enabling training on data
collected with diverse camera systems. MegaDepth [30] uses
a scale-invariant loss [1] for optimization on a novel large-
scale dataset created from images of well-photographed

landmarks. MiDaS [25] further proposes an approach that
is invariant to the unknown shift, often induced during
stereoscopic post-processing from data sources such as 3D
movies. Unfortunately, predicting depths with unknown
shifts leads to the inability to accurately recover 3D scene
shape. LeReS [24] alleviates this issue via a novel module
designed for the refinement of distorted point clouds. The
main issue of the aforementioned methods is their inability
to estimate metrically correct depth due to the usage of scale
and shift invariant losses. Furthermore, owing to the lack of
additional constraints, these methods rely exclusively on the
relative object size cue.

Another line of work, which specifically addresses the
domain gap induced by the usage of various camera sys-
tems, investigates the embedding of known camera param-
eters as an additional input at a certain stage of the network.
In theory, this provides the network with useful information
and enhances generalization to camera systems not present
in the training data. To solve the focal length/depth ambi-
guity, He et al. [22] collected new datasets with varying focal
lengths while embedding the known focal length value as an
additional input. Instead of simple embedding via a fully-
connected layer, CAM-Convs [21] proposes to embed the
parameters in convolutional channels and fuse them in skip
connections between the encoder and decoder, facilitating
generalization for different sensor sizes, principal points,
and focal lengths. On the other hand, Zhao et al. [20] in-
vestigate the effects of extrinsic parameters, namely camera
height and camera pitch, on the performance of MDE. They
developed data augmentation and extrinsic encoding to
mitigate the overfitting due to the perspective geometry
bias induced by the dominant extrinsic parameters in the
training dataset. Finally, related to this work, in [44] we
presented the ground-plane embeddings and demonstrated
their effectiveness on the synthetic data.

2.3 Domain adaptation for monocular depth estimation

The task of domain adaptation is to adapt the model, which
was previously trained on either known or unknown source
data, to target data originating from a different high-level
distribution. For this purpose, domain adaptation, unlike
domain generalization, gives the model access to the target
domain data during training.

The primary goal of research in this area is to enable
training on synthetic data due to the easily obtainable dense
ground-truth. Naturally, due to the significant sim2real
gap, performance on real-world data degrades dramatically
when deploying models trained purely with synthetic data.
Most methods employ adversarial domain adaptation to re-
duce this distribution shift, either in the input space, feature
space, or both [45], [46]. One of the most popular approaches
assumes that the distribution shift is predominantly induced
by the change of style between the two domains, while
content remains largely the same. This is first examined in
[47], where the authors propose using cycle-consistency [48]
to translate the style, while simultaneously preserving the
content. On the other hand, AdaDepth [49] adversarially
aligns encoded high-dimensional image representations, en-
couraging the network to learn domain-invariant features.
T2Net [50] uses a combination of both approaches, further

4

Image

World

Fig. 2: Illustration of the possible depth cues used in MDE.
The most common cue for estimating depth d, is the object
imaging size s - bigger objects correspond to smaller depths.
Another cue, unique to MDE for ground vehicles, is the
vertical image position y - lower objects correspond to
smaller depths.

explored in [51], [52], [53], [54]. Notably, LFDA [54] con-
siders an advanced method for feature decomposition into
content and style features, enabling the latter to be ignored
during domain alignment.

Recently, the trend has been to include an additional loss
of the target domain to facilitate domain alignment, usually
by reconstructing the nearby view [52], [54], [55], [56], [57].
For example, GASDA [52] enforces the epipolar constraint
between the rectified stereo images, while MonoDEVSNet
[55] trains an additional pose network to enable view
reconstruction for images from unknown nearby views.
Additionally, the incorporation [57], [58] or joint learning
[59] of semantic information can lead to further perfor-
mance improvements. For instance, DESC [58] enforces the
semantic consistency on the target domain via a pretrained
segmentation network.

3 CHALLENGES OF CAMERA PARAMETER VARIA-
TIONS

The ability to generalize is an indispensable prerequisite
for the scalable deployment of deep learning solutions in
autonomous driving. Obviously, an autonomous vehicle
should be able to function in various environments, whether
it is employed in a rainy city or a sunny rural environment.
This environmental domain gap is a major focus of research
in many perception tasks, including MDE. However, the do-
main gap can also be caused by the variation of camera pa-
rameters, including both intrinsic and extrinsic parameters.
Naturally, the perspective geometry changes considerably
when images are taken from a different viewpoint with a
different sensor. Due to the inherent geometric nature of the
MDE task, this variation has a significant impact on accu-
racy, even when it induces a rather small difference in the
final scene appearance on resulting images. Unfortunately,
this problem is often ignored, primarily due to the lack

of data with sufficiently diverse camera parameters. Since
most datasets are acquired with a single vehicle-camera
setup, testing is often performed on a different split of the
same dataset, which does not contain the aforementioned
perspective geometry perturbations.

3.1 Overfitting to vertical image position
In order to the problem of limited generalization capability,
it is beneficial to investigate how models actually learn
depth. Consider the illustration in Fig. 2. One possible cue
to estimate depth d from monocular images is to use the
relation between imaging size s and real-world size S:

d = fv
S

s
, (1)

where fv is the vertical focal length, with (s, fv) expressed
in terms of pixels and (S, d) in meters. In such a manner, if
the focal length is known, models are essentially optimized
to recognize known objects and learn their real-world size
S. This is the most common cue, which is heavily exploited
in MDE for indoor scenes. Note that this assumes that the
focal length is constant throughout the dataset. If the model
is trained with data from multiple cameras, focal length is
usually abstracted away, thus estimating depth up to an
unknown scale. Such an approach is common in relative
depth estimation methods [23], [24], [25], [26], [27], [28], [29],
[30].

Another possible cue, which is specific to ground ve-
hicles with a fixed camera system, is the vertical image
position y, as visualized in Fig. 2. Considering a calibrated
pinhole camera model with negligible distortions, the depth
at which optical rays at position y intersect the ground plane
can be calculated as

d =
fvh

(H − cv − y) cos(α)− fv sin(α)
, (2)

where H is the vertical sensor size, cv is the vertical prin-
cipal point coordinate, α is the camera pitch and h is the
camera height from the ground plane. Here we ignore the
effects of camera yaw and roll, as these transformations are
rare in autonomous driving. If the vehicle-camera system
is fixed throughout the dataset, the model has no incentive
to directly estimate (α, h, fv, cv, H). Instead, it learns the
mapping y → d which is induced by the constant values of
parameters. It has been shown that this is a dominant cue
in autonomous driving scenarios [60], where models almost
completely ignore the object size cue.

With these insights, it is obvious how variations of cam-
era parameters can affect depth estimation. If the parameters
change compared to the training data, the learned mapping
y → d no longer holds, which causes a significant drop in
accuracy. To ablate the effects of each parameter, we create
bespoke datasets in the CARLA simulator [31]. First, we
train the model on a dataset with a fixed vehicle-camera
system, and then we test it on data with parameter vari-
ations. We identify (α, h, fv, cv, H) as the primary causes
of domain shift and visualize the effects of their changes
in Fig. 3. We argue that variations of other parameters are
either not frequent enough (e.g. camera roll), or do not
have a significant effect on performance (e.g., camera yaw,
horizontal focal length).

5

Original image Ground truth depth Estimated depth Absolute relative error

a)

b)

g)

f)

e)

d)

c)

0.0

0.1

0.2

0.3

0.4

0.5

Fig. 3: Effects of camera parameter variations. We train the baseline encoder-decoder architecture similar to [10] on a
dataset with a fixed vehicle-camera system. We then change the parameters one at a time (here referred to as training value
→ testing value) and show the accuracy of the model for different image regions: a) training parameters, b) α - camera
pitch (0◦ → −10◦), c) h - camera height (1.5m → 1.2m), d) fv - vertical focal length (570px → 750px), e) cv - vertical
principal point coordinate (160px→ 120px), f) fh - horizontal focal length (1824px→ 2400px), g) H - vertical sensor size
(320px → 480px). Since fv and H are coupled via the equation θv = 2arctan(H/(2fv)), where θv represents the vertical
field of view, we vary fv and H by changing the field of view, and thus keeping the other parameters fixed.

From the results in Fig. 3, three main conclusions can
be drawn: (i) although the model correctly estimates the
structure and object edges, the parameter variation signif-
icantly degrades the accuracy of the depth estimation of the
ground plane and the objects on it, (ii) while the degrada-
tion in accuracy can be mostly predicted by invalidation
of the learned vertical image position cue, there are some
inconsistencies, which means that the model uses additional
unknown cues, (iii) parameter variations that affect the
horizontal appearance of the image (e.g., horizontal focal
length) do not degrade the accuracy, implying that the
model primarily focuses on vertical cues.

Considering that the usage of the vertical image position
cue is a primary cause of performance deterioration in the
presence of parameter variation, one could argue that the
model should be incentivized to focus on other possible
cues. Some works explore this approach by carefully im-
plementing augmentations that should focus the model on
the object size cue [15], [61], [62]. However, we argue that
ignoring the vertical position cue is both impossible and
undesirable. A major drawback of a model that relies pri-
marily on object size cue is the almost certain degradation in
performance for image regions without recognizable objects.
This may be due to the complete absence of objects (e.g.,
cars), or even due to the presence of objects or structures
without adequate representation in the training dataset.

Furthermore, we believe that it is suboptimal to ignore the
known geometric relationship between the camera system
and the ground plane. To that end, our camera parameters
embeddings presented in Section 4.3 exploit this relation-
ship to provide the model with useful geometric informa-
tion that is entirely induced by the values of the intrinsic
and extrinsic parameters.

3.2 Diverse data generation

While the inability to generalize for various camera param-
eters can be explained by the way models learn depth,
the main cause of these issues is the lack of data with
sufficiently diverse camera parameters. Let Di represent
the i’th domain composed of images x ∈ RHi×Wi×Ci and
depth labels y ∈ RHi×Wi . Here, we consider that images
and corresponding labels are sampled from a high-level
distribution parameterized by domain variables ψi, i.e.,
Di = {(xj ,yj)}Ni

j=1 ∼ PXY (ψi), which can be further sepa-
rated into environmental variables Ei and camera variables
Ci, i.e., ψi = (Ei, Ci). Environmental variables may represent
factors like snow, geographic location etc., while camera
variables include both intrinsic and extrinsic parameters.

For the scalable deployment of MDE in autonomous
driving, models should be able to generalize over a wide
distribution of environments and vehicle-camera systems.

6

Formally, the model should perform accurately on the test-
ing domain

DTest = {Di ∼ PXY (ψi) | ψi ∈ E × C}, (3)

where E and C represent possibly infinite sets of feasible en-
vironments and camera parameters. For the sake of simplic-
ity, we assume that satisfactory generalization performance
is achieved by training on a finite number of environments
{Ei}Pi=1 ⊆ E and vehicle-camera systems {Ci}Qi=1 ⊆ C. In
order to achieve this, one may use different configurations of
training dataDtrain = {Di}Mi=1. The optimal solution would
sample data from all possible combinations of environments
and vehicle-camera systems:

Dtrain = {Di ∼ PXY (ψi) | ψi ∈ {Ej}Pi=j × {Cj}Qi=j}. (4)

Unfortunately, this is intractable, as the collection of such
diverse data is operationally almost impossible. In each en-
vironment, data would need to be acquired with many dif-
ferent cameras capturing images from diverse viewpoints.

A more realistic approach would be to formulate the
training data as

Dtrain = {Di ∼ PXY (ψi) | ψi ∈ {(Ei, Ci)}Mi=1}. (5)

Here, for each environment, only one vehicle-camera system
is used to acquire the data. One could create such a dataset
via mixing of publicly available datasets acquired with
fixed vehicle-camera systems such as KITTI [63], Oxford
RobotCar [64] or Cityscapes [65]. However, we argue that
this approach can fail under certain conditions, especially if
the architecture and training procedure are not properly de-
signed. As models have a high discriminatory capacity, they
may learn to associate the environment with its correspond-
ing camera parameters in the training data. For example,
let’s assume that environment E1 is distinctive enough from
other environments in Dtrain, e.g., the only environment
with snow. The model could then learn to recognize snow,
and if snow is identified in the image, estimate depth by
overfitting to the camera parameters C1. Therefore, model
would fail to perform well on a testing dataset collected in a
snowy environment with different camera parameters (i.e.,
(E1, C2)), even if these camera parameters were present in
the training data, albeit in a different environment. Never-
theless, this approach constitutes a promising research di-
rection, as a careful implementation and data augmentation
can resolve these issues.

However, due to the lack of publicly available data
with sufficiently diverse camera parameters, we choose a
different approach in this work, which allows us to use
easily collectable data from a simulation environment. Our
proposed method is specifically designed to generalize to
data acquired with any camera setting in the target environ-
ment, so that we are able to produce accurate metric depth
predictions for multiple datasets with different camera in-
trinsics and extrinsics. Remarkably, we achieve this by using
only a single real-world dataset with a fixed vehicle camera
system during training.

4 METHOD

In this section, we present our contributions that enable ac-
curate monocular depth estimation in autonomous driving

DDAD Argoverse nuScenes Waymo

CARLA
KITTI

Fig. 4: Our data configuration for sim2real adaptation. For
the source dataset DS , we collect synthetic data from the
CARLA simulator [31]. The target dataset DT is from the
real-world environment with certain environmental char-
acteristics (e.g., sunny daytime, such as KITTI [63]. Our
method should be able to generalize to arbitrary vehicle-
camera systems in the target environment, e.g., DDAD [14],
Argoverse [66], nuScenes [67], Waymo [68].)

for an arbitrary vehicle-camera setup. We achieve this by the
simultaneous optimization of two objectives: (i) equivari-
ance to the camera parameters variations, facilitated by the
usage of synthetic data collected with the diverse vehicle-
camera systems, (ii) transfer of the learned equivariance to
the environmental features of the real world, via the usage of
a single real-world dataset with a fixed vehicle-camera sys-
tem. After a careful inspection of the problem and ablation
of possible design ideas, we present our main contributions:
a novel embedding of camera parameters based on the
geometric relationship between the camera and the ground
plane, and a novel architecture that carefully incorporates
this parameterization to enable domain adaptation.

4.1 Problem statement
Let DTrain be the training data collected in both the source
environment ES and the target environment ET . Source data
is collected with a diverse set of camera parameters {Ci}Mi=1,
while the target data includes images collected with a single
vehicle-camera system CT . Formally, we consider the fol-
lowing training data configuration:

Dtrain = DS ∪ DT ,
DS = {Di ∼ PXY (ψi) | ψi ∈ {(ES , Ci)}Mi=1},

DT ∼ PXY (ψT), ψT = (ET , CT).
(6)

The task is to enable generalization toDTest, which contains
images collected with varying vehicle-camera systems in the
target environment:

DTest = {Di ∼ PXY (ψi) | ψi ∈ {ET } × C}, (7)

7

Encoder Decoder

Feature space

Depth loss Encoder Decoder

Feature space

Depth loss

Embedding
function

Camera
parameters

Embedded camera parametersBaseline

Encoder

Decoder
Feature space

Depth loss

Domain alignment

Domain
disc. Domain loss

Encoder

Decoder
Feature space

Depth loss

Embedding
function

Camera
parameters

Embedded camera parameters
&

domain alignment

Domain
disc. Domain loss

Fig. 5: Possible feature space mapping with respect to the different training strategies in a simple data config-
uration. The training data includes images from the source domain acquired with three vehicle-camera systems
(ES , C1), (ES , C2), (ES , C3) and images from the target domain acquired with a single vehicle camera system (ET , C2).
The task is to generalize to the test data in the target domain with the configurations (ET , C1), (ET , C3). We present
hypothetical feature representations learned by the encoder for different training strategies: top left – standard encoder-
decoder architecture, top right – known camera parameters are embedded and given to the decoder as an additional input,
bottom left – learned features from the source and target domains are adversarially aligned via domain discriminator,
bottom right – a combination of domain alignment and camera parameters embedding.

where C represents a set of feasible camera parameters.
While we designate our method for sim2real adaptation

scenario depicted in Fig. 4, it is applicable to any problem
that involves data from a source environmental domain
with diverse camera parameters and a target environmental
domain with images collected by the single vehicle-camera
system.

4.2 Design considerations

The described problem requires careful implementation of
the architecture and optimization strategy, as it is prone to
overfitting induced by both the environmental and camera
parameter domain gaps. In Fig. 5, we explore different
designs and visualize possible feature space representations,
which are simplified for illustration purposes. We assume
that domains ES and ET are sufficiently different, and that
the encoder has enough discriminatory capacity to recog-
nize the environmental domain to which an image belongs
to.

First, we consider the usage of a simple encoder-decoder
architecture termed ”Baseline”. With the assumption of
sufficient discriminatory capacity, the encoder successfully
maps images the from source and target environments to
different regions of the feature space. Additionally, since the
training data includes different vehicle-camera systems in
the source domain, i.e., (ES , C1), (ES , C2), (ES , C3), a prop-

erly optimized encoder learns features that are equivariant
to camera parameter variations. For example, one of such
features could be the horizon level or homography of the
ground plane. The decoder can then use this to accurately
estimate depth for all three vehicle-camera systems. The
main issue, however, is that these features are likely specific
to the source domain. Training data from the target domain
includes images collected with only one vehicle-camera
system, i.e., (ET , C2), which means that the model has no
incentive to learn features that enable the estimation of
camera parameters in the target domain. This translates to
the inability of the system to successfully generalize to the
test data, which includes (ET , C1) and (ET , C3). Basically,
what happens is that the model successfully determines
that images belong to the target environment, consequently
inaccurately estimating all depths as if the images were
collected by the single vehicle-camera system present in the
training data, i.e., (ET , C2).

The primary cause of this overfitting is that the features
informing the decoder about the camera parameters do
not translate well across environmental domain gaps. A
possible solution to remedy this problem is to supplement
the decoder directly with information about known cam-
era parameters, providing them as an additional input.
The encoder is therefore relieved from the requirement
to discriminate between different vehicle-camera systems,

8

hence enabling the learning of camera parameters invariant
features. This invariance should theoretically transfer well
to the target domain and enable generalization for (ET , C1)
and (ET , C3). Unfortunately, as we will show in our ablation
studies, this is usually not the case. When the model recog-
nizes an image from the target domain, it learns to simply
ignore embedded camera parameters, thereby causing the
same generalization issues as in the simple encoder-decoder
architecture. This happens because the supplemented infor-
mation is effectively useless if the training data includes
only one vehicle-camera system, which is true for the target
domain.

A possible solution is to use domain adaptation tech-
niques [45], [46] to reduce the gap between the features
of the source and target environmental domains. In MDE,
this is frequently done via adversarial feature alignment
[49], [50], [52], [55], where a domain discriminator tries
to correctly classify the true domain, while the encoder
is optimized to fool the discriminator. In Fig. 5, we show
the possible ramifications of the direct usage of such an
approach on our problem. The main issue is that the model
does not explicitly know that the images from domains
(ES , C2) and (ET , C2) are collected with the same vehicle-
camera system. This can potentially obscure the domain
alignment, leading once again to poor generalization.

Both the inclusion of embedded camera parameters and
the usage of adversarial alignment have potential ramifica-
tions when applied separately. However, we argue that they
complement each other when carefully jointly implemented
into the architecture. While the supplemented information
by the embedded parameters enables learning of camera
parameters invariant features, domain alignment allows
seamless transfer of that invariance to the target environ-
mental domain, as visualized in Fig. 5. Due to the domain
alignment, the model is no longer able to discriminate
between the two environmental domains, which effectively
means that it can no longer learn to ignore the embedded
camera parameters when estimating depth for the images
from the target domain. To that end, we propose to use such
design in our approach.

4.3 Ground plane embedding
If the training dataset includes images with varying vehicle-
camera systems, the model is required to learn features that,
in some way, provide information about camera parameters.
In order to alleviate the model from such a requirement, we
propose to embed the parameters and provide the embed-
dings to the model as an additional input.

Here we consider the embedding of the same parameters
whose variation was proved to affect the MDE accuracy
in Section 3. Namely, this includes camera pitch α, camera
height relative to the ground plane h, vertical focal length
fv , vertical principal point coordinate cv and image height
H . Similarly to [22], a simple approach would be to fuse
known values (α, h, fv, cv, H) via fully connected layers.
On the other hand, we argue that the embedding function
should perform the following mapping:

(α, h, fv, cv, H) ∈ R5 7→ E ∈ RH×W×C , (8)

where E represents resulting embeddings, with H,W being
the image height and width, respectively. In addition to the

Image coordinate system

Camera coordinate system

Fig. 6: Illustration of the proposed ground plane embedding.
For each (u, v) in the image, we calculate the depth (z co-
ordinate in the camera coordinate frame) of the intersection
point between the optical ray and the ground plane. These
depths are then assembled and Fourier encoded into the
final embedding E ∈ [−1, 1]H×W×2k+1, where k is the
number of frequency bands.

encoding of camera parameters, well designed embeddings
should provide per-pixel information related to the task in
hand, i.e., MDE. For example, as the perspective geometry of
the scene changes with the variation of camera parameters,
each pixel location should be informed of how this variation
affects the geometry of the corresponding pixel individually.

To achieve this, we draw inspiration from how models
actually learn depth, as ablated in Section 3. The primary
cue for MDE in autonomous driving is usually vertical im-
age position, which is strongly associated with the relation
between the vehicle-camera system and the ground plane.
This relation, specific to ground-based vehicles, transforms
MDE from an ill-posed problem to a geometrically tractable
one. Accordingly, we choose to exploit this relationship
when designing our embeddings, as visualized in Fig. 6.

Given the pinhole camera model, the optical ray o pass-
ing through image coordinates (u, v) can be expresses as a
parametric line equation:

o(z) = z

(u− cu)/fu(v − cv)/fv
1

 , (9)

where (cu, cv) and (fu, fv) are principal point coordinates
and focal lengths in pixels, while the variable z represents
depth in the camera coordinate system. Additionally, given
the camera extrinsic rotation matrix R(α) and camera height
from the ground plane h, the ground plane equation can be
written as:

nTRT(α)p+ h = 0, (10)

where n = [0,−1, 0]T is an ideal ground plane normal. By
substituting o(z) → p we calculate z as the depth of the
intersection between the ground plane and the optical ray
through pixel (u, v). Note that we allow intersections behind

9

the camera for rays above the horizon line, i.e., negative
z values. Depths are capped to a maximum value specific
to the dataset and normalized to [−1, 1]. Subsequently,
inspired by [69], we use Fourier encoding in order to map z
to a higher dimension:

z → [z, sin(f1z), cos(f1z), · · · , sin(fkz), cos(fkz)] (11)

where fi are logarithmically spaced between 20π and 2k−1π.
This process is repeated for each (u, v) ∈W ×H and assem-
bled into the final embedding E ∈ [−1, 1]H×W×2k+1. We
argue that this embedding possesses the following desirable
properties:

• as a function of parameters (α, h, fv, cv, H), it can
accurately inform the model about parameter varia-
tions,

• it provides the model with useful per-pixel geometric
information about the relation between the camera
and the ground plane (for example, z is equal to
the expected depth of the pixel if no occlusions are
present on the ground plane),

• it enhances generalization to the vehicle-camera sys-
tems that are not present in the training data.

• it encourages the model to exploit the vertical image
position cue, which is a cue that is more adaptable to
environmental domain gaps (ground-plane contact
point is a cue easily detectable across all domains,
while priors involving sizes of known objects can
vary significantly.)

4.4 Model architecture
As visualized in Fig. 7, we design our architecture based
on the concepts presented in Section 4.2. As in standard
practice, we consider the usage of an encoder model which
produces feature maps at incrementally downscaled reso-
lutions. Such models are often based on the residual con-
volutional architectures [70], [71]. Recently, inspired by the
success of the transformer architecture in language process-
ing [72], many works implement self-attention as a feature-
learning backbone for general vision tasks [73], [74], [75],
[76], [77], or even in MDE [8], [9], [18], [38]. The primary
motivation is to exploit the global receptive field of the self-
attention, thus enabling interaction between positionally
distant image features, even in shallow layers.

While this has obvious positive consequences in tasks
such as feature matching, we argue that the usage of self-
attention in the shallow layers is not beneficial for MDE,
especially when accounting for a major increase in computa-
tional complexity. Feature maps in shallow layers most often
contain information about the local structure, i.e., object
edges and texture. In dense prediction tasks such as MDE,
this local structure information is frequently fused in the
final layers of the decoder via skip connections [32], which
is detrimental for accurate fine-grained depth estimation
that is consistent with objects boundaries. To that end, we
advocate towards usage of convolutions in shallow layers,
due to the proven capability for seamless extraction of local
structure.

In Fig. 5 we presented an approach that uses a combi-
nation of embedded camera parameters and domain align-
ment. In design of such an approach, we made a simplifying

assumption that the feature space includes a singular feature
map, which is then passed to the decoder. However, a
standard practice in dense prediction is to obtain multi-
ple feature maps at incrementally lower resolutions. Here,
we consider the usage of encoder models that produce
feature maps (F1,F2,F3,F4,F5), with downscaling ratios
(2, 4, 8, 16, 32) respectively. Unfortunately, it is infeasible to
adversarially align all feature maps.

Inspired by the style-transfer methods [78], [79], we
separate feature maps into Fsty = {F1,F2} and Fcon =
{F3,F4,F5}. We presume that Fsty contains information
about low-level local structure such as object edges and
domain-specific style information such as texture and con-
trast. Adversarial domain alignment of these features is un-
desirable due to the presence of local structure information,
which, when aligned, might significantly distort the final
structure of the estimated depth image. On the other hand,
Fcon contains high-level content information, which is a
good candidate for domain alignment.

Before domain alignment, we proceed with a joint re-
finement of all content features. First of all, we concatenate
content features as

Z = Concat(F3,Up(F4, 2),Up(F5, 4)), (12)

where Up(x, n) is an upscaling of spatial dimensions by
a factor n via nearest-neighbor interpolation. Contrary to
Fsty , Fcon contains high-level structural information about
objects and the underlying geometry, which is suitable for
global feature interaction via self-attention. For example,
it is beneficial to establish correspondence between distant
objects that have the same vertical position of their ground
plane contact points (this correspondence naturally com-
plements our proposed camera parameters embeddings).
Accordingly, we design CFEB (Content Feature Enhancement
Block) where we refine content features in a series of trans-
former blocks.

We visualize the architecture of the proposed trans-
former blocks in Fig. 8. Due to the presence of varying
image resolutions in our problem, we propose omitting
the positional embedding [37] when implementing attention
blocks. This is possible due to the presence of convolutional
layers in the encoder, which inadvertently learn positional
information [80]. To that end, we use a simple 1x1 con-
volution as a projection layer that enables us to aggregate
features across different channels and to control the channel
dimension. After layer normalization [81], we proceed with
the calculation of multi-head attention (MHA). Inspired by
[76], we reduce the spatial dimension of features before
the calculation of keys and values in order to minimize
computational complexity. Instead of average pooling, we
use strided depth-wise convolutions [82], which induce neg-
ligible computational cost. Therefore, we calculate queries,
keys and values as:

Z̃ = DWConv(Z), (13)

Q = ZWQ,K = Z̃WK,V = Z̃WV. (14)

Here, DWConv transforms Z ∈ RHz×Wz×Cz into Z̃ ∈
R

Hz
s ×Wz

s ×Cz , where s represents the stride of the con-
volutions. Afterwards, we rearrange Z and Z̃ into two-
dimensional tensors before projection with learnable pa-

10

Style
normalization

Encoder

Upsample &
Concat

Domain
discriminator

Decoder

Transformer
block 1

Transformer
block d

C
Transformer

block 1
Transformer

block d

Ground plane
embedding

Camera
 parameters

- Learnable submodules

- Loss functions

- Source data

- Target data
C - Concatenation

Stereo supervision

Ground truth supervision

Gradient
reversal layer

Fig. 7: Training pipeline and system architecture. Our training data consists of images acquired with different camera
parameters in the source environment {(ES , C1), ..., (ES , CN)} and images acquired with a single vehicle-camera system
in the target environment (ET , C1). Based on the insights ablated in Section 4.2, we design an architecture that carefully
combines the adversarial domain adaptation and ground plane embedding presented in Section 4.3. Our system consists
of five learnable submodules: encoder, domain discriminator, decoder, CFEBZ and CFEBC . The first three are based on
convolutional architectures, while the last two exploit self-attention. For the training losses, we use dense ground truth
supervision in the source domain, and readily available and scalable stereo supervision in the target domain.

rameters WQ,WK,WV ∈ RCz×d to queries Q ∈ RNq×d,
keys K ∈ RNkv×d, and values V ∈ RNkv×d. In a standard
manner, we calculate the attended output A as:

A = softmax

(
QKT

√
d

)
V, (15)

which is calculated for multiple heads and then fused via
the linear layer. Due to the spatial reduction induced by the
strided depth-wise convolutions, computational complexity
of the attention calculation is reduced from O(2H2

zW
2
zCz)

to O(2H
2
zW

2
zCz

s2).
After attention calculation, we proceed with feature re-

finement in the feed-forward model (FFN). Similarly to [76],
[77], [83], we rearrange features back into three-dimensional
tensors and perform spatial convolution operations to ag-
gregate local features. As visualized in Fig. 8, FFN is
modeled as a 3x3 DWConv sandwiched between two 1x1
convolutions that expand and shrink the channel dimension
by a factor of 4 in order to learn more complex feature
representations.

To aggregate, CFEBZ incorporates d successive trans-
former blocks, with each performing a mapping Zi 7→ Zi+1:

Zi = Conv(Zi) (16)
Zi = MHA(LayerNorm(Zi)) + Zi (17)
Zi+1 = FFN(LayerNorm(Zi)) + Zi, (18)

with Z0 initialized via Eq. (12). To that end, after performing
the mapping CFEBZ : Z0 7→ Zd, we consider Zd to
be a good candidate for domain alignment. As visualized
in Fig. 7, we forward Zd to the domain discriminator to
adversarially align target and source domain features. This
encourages the model to optimize Zd as features that are
invariant to the environmental domain gap. Architecture of

MHA

+

FFN

+

LayerNorm

Transformer
block

Strided DWConv

Conv 1x1

LayerNorm

Conv 1x1

DWConv 3x3

LayerNorm

+

Conv 1x1

FFN

Fig. 8: Architecture of the transformer blocks. We use strided
depth-wise convolutions to reduce the spatial dimensional-
ity of keys K and values V.

the domain discriminator is relatively simple. It performs
the mapping Zd 7→ {0, 1} via a sequence of convolutional
and pooling layers, finalized by global average pooling [84]
due to the variable image resolution in the training data.

We proceed with the architecture design as proposed
in Fig. 5, where we provide embedded camera parameters
to the model in conjunction with domain adaptation. It is
paramount that the embeddings are provided to the model
exclusively after the features were successfully adversarially
aligned. If that was not the case, the discriminator would try
to align the provided embeddings, essentially leading to the

11

loss of the information about the known camera parameters.
To that end, we provide the proposed camera embed-

dings E after the model has learned domain-invariant fea-
tures Zd. While we experimented with various means of
fusing E and Zd, we determined that a simple concatenation
followed by refinement via transformer blocks works best:

C0 = Concat(Zd,E), (19)
CFEBC : C0 7→ Cd, (20)

Here, the CFEBC block effectively fuses camera embed-
dings E with domain invariant features Zd, producing fea-
tures Cd ∈ RHc×Wc×Cc , which contain information about
the known camera parameters. Since (Hc,Wc) =

1
8 (H,W),

similarly to [10], we design a decoder that successively
upsamples Cd into a final depth map D.

In order to accurately estimate fine details like object
edges, a standard procedure is to fuse Fsty = {F1,F2},
which contain information about local structure. However,
these features also contain information about contrast and
texture, which are specific to the particular environmental
domain. This information may effectively produce features
that are not domain-invariant, therefore hindering the de-
sired effects of adversarial alignment.

It has been shown [78], [79] that the style discrepancy
can be primarily attributed to a difference in channel-wise
mean µ and variance σ of the corresponding feature maps.
This discrepancy can be effectively removed via adaptive
instance normalization [79]. Specifically for our problem,
we perform Style Normalization (SN), where we scale the
feature maps of the source domain to align them with the
statistics of the target domain. During training, each batch
involves images sampled from the source domain DS and
the target domainDt, which induces features FSsty and FTsty .
Accordingly, we normalize the source feature maps and
scale

si = σ(ti)

(
si − µ(si)
σ(si)

)
+ µ(ti). (21)

Here, (si, ti) ∈ (FSsty,F
T
sty) are corresponding feature maps

for each i ∈ [1..Csty], where Csty is the overall num-
ber of channels in Fsty . Furthermore, we also fuse E in
decoder convolutional layers to provide local information
about the expected depth of the ground plane. Finally, at
the output of the decoder, we estimate the depth map
D ∈ [0, Dmax]

H×W , with Dmin and Dmax being specific
to the dataset.

4.5 Optimization
In order to optimize all network submodules, we use a com-
bination of target, source and adversarial losses. We assume
that the source domain data is collected with appropriate
depth labels, i.e., DS = {(Ii, D̂i)}NS

i=1, where Ii ∈ RH×W×C

refers to the image with a corresponding dense ground truth
depth map D̂i ∈ RH×W . For the source training loss, we
follow a standard approach for supervised depth estimation
[1]. Given the logarithmic distance gi = log(d̂j)− log(dj) at
a pixel location j, the source loss is:

LS = β

√√√√ 1

|D|
∑
i

g2i −
γ

|D|2

(∑
i

gi

)2

, (22)

where we use β = 10 and γ = 0.85 as in [8].
To extend the applicability of our method, we consider a

target domain without ground-truth labels, possibly due to
the difficulty of data acquisition in the respective environ-
ment. To that end, target domain data DS = {(ILi , IRi)}NT

i=1

includes only left ILi ∈ RH×W×Cand right IRi ∈ RH×W×C

stereo images, with known extrinsic calibration parameters
R which enable rectification. In order to provide a super-
vision signal for the target domain images, we use a view
reconstruction loss [42]:

ÎL =W(IR,D,R), (23)

Lrecon =
η

2
(1− SSIM(̂IL, IL)) + (1− η)∥ÎL − IL∥, (24)

where ÎL ∈ RH×W×C is a generated left stereo image,
synthesized by a warping function W . SSIM refers to the
Structural Similarity Index Measure [85] with parameter
η = 0.85. Additionally, we incentivize smooth depth maps
on planar regions via a smoothness loss [42]:

Lsmooth = ∥∂uD∗∥e−∂uIL + ∥∂vD∗∥e−∂vIL , (25)

where D∗ is a mean-normalized depth. To aggregate, our
target domain loss is

LT = Lrecon + κLsmooth, (26)

with κ = 10−3.
Furthermore, we encourage the model to learn domain

invariant features via adversarial feature alignment. We use
the standard adversarial loss [86]:

Ladv =− EI∼p(ψS)[log(Q(F(I)))]
− EI∼p(ψT)[log(1−Q(F(I)))],

(27)

where Q represents the discriminator which tries to cor-
rectly classify whether features belong to either the target
or the source domain, while the feature extractor F is opti-
mized to fool the discriminator in a minimax optimization.
Similarly to [55], we implement this via Gradient Reversal
Layer (GRL) [86], which reverses the gradient vector during
back-propagation.

Our final loss is a weighted sum of the aforementioned
losses:

L = LS + λ1LT + λ2Ladv, (28)

with λ1 = 10 and λ2 = 0.5.
As visualized in Fig. 7, our model consists of five

submodules, each with the corresponding parameters:
(θenc, θCFEBZ

, θdisc, θCFEBC
, θdec). Given the position of

the adversarial discriminator, we can divide the parame-
ters of the model submodules to enable optimization via
Eq. (27) : θF = {θenc, θCFEBZ

}, θQ = {θdisc}, θD =
{θCFEBC

, θdec}. Then, according to the proposed GRL opti-
mization, parameters are updated as follows:

θF ← θF − µ
(
∂LS
∂θF

+ λ1
∂LT
∂θF

− λ2
∂Ladv
∂θF

)
, (29)

θQ ← θQ − µ
∂Ladv
∂θQ

, (30)

θD ← θD − µ
(
∂LS
∂θD

+ λ1
∂LT
∂θD

)
, (31)

where µ represents the current learning rate.

12

5 EXPERIMENTAL EVALUATION

5.1 Evaluation details

Datasets. To investigate the generalization ability of our
method, we use several data sets with different camera
configurations. Since our main focus is on generalization
to different camera parameters, we use real-world datasets
collected in similar environments, i.e., urban areas with
predominantly sunny and clear weather. During training
and testing, all datasets are downscaled to W = 640, where
H retains the original aspect ratio. Table 1 lists the camera
parameters for the relevant proprietary and open-source
datasets used in this work. For datasets with different cal-
ibrations in different segments, we give mean values. The
datasets used in this evaluation study are briefly presented
below..

CARLA dataset. This is an open-source dataset that
we created in the CARLA simulator [31]. We simulated
autonomous driving scenarios in urban, rural and high-
way environments on 8 different maps Town01 - Town07,
Town10HD. The maps were populated with a variety of traf-
fic actors that were autonomously controlled in compliance
with traffic rules. We simulated forward-looking RGB and
depth cameras and adjusted the distortion parameters and
post-processing effects to mimic the KITTI dataset [63] as
closely as possible. As shown in Fig. 9, the data was col-
lected using different vehicle camera systems, with camera
parameters randomly initialized at each data instance. This
dataset serves as the primary source of data with different
camera parameters, i.e., it corresponds to the DS in Eq. (6).

KITTI dataset [63]. This is an open-source dataset on
autonomous driving in the urban area of Karlsruhe and
surroundings. We use forward-facing RGB stereo cameras
for training and LiDaR-generated ground-truth depths for
validation. As usual in practice, we use the Eigen split
[87], which comprises 45200 training images. This dataset
servers as the primary source of training data from the
target environmental domain, i.e., it corresponds to the DT
in Eq. (6).

DDAD dataset [14]. This is an open-source dataset col-
lected in various cities in the US and Japan under challeng-
ing and different conditions. The vehicles were equipped
with 6 monocular surround-view cameras and a LiDaR,
which enabled the generation of corresponding ground-
truth depth maps. In both training and testing, we only use
frontal cameras to maintain consistency with other datasets.
We use the official validation split, which amounts to 3850
samples in 50 different scenes.

Argoverse dataset [66]. We use the Argoverse 1 Stereo
Dataset, which includes rectified stereo images and ground-
truth disparity maps collected in the Miami and Pittsburgh
metropolitan areas. Ground-truth disparity is generated us-
ing the LiDaR scene flow method [88], accumulating points
from 11 nearby frames. We use the official validation split
with 1522 images across 17 scenes.

Waymo dataset [68]. We use the Waymo Perception
Dataset, which consists of highly diverse autonomous driv-
ing data in various urban and suburban environments in
the US. The sensor suite includes hardware-synchronized
5 surround-view RGB cameras, 1 mid-range LiDaR and 4
short-range LiDaRs, with a diverse set of human-labeled

TABLE 1: Camera parameters for: (i) our dataset collected in
the CARLA simulator, (ii) open-source datasets collected in
the real-world. To simplify the comparison, the values of fv
and cv are expressed as a function of H .

Dataset α[°] h[m] H [px] fv[H] cv[H]

ES CARLA [−10, 5] [1.0, 2.2] [160, 480] [0.85, 2.75] [0.4, 0.6]

KITTI 0.750 1.650 192 1.925 0.462
DDAD −0.511 1.562 384 1.794 0.507

Argoverse −1.085 1.680 448 1.831 0.509
ET Waymo −0.010 2.115 416 1.614 0.506

nuScenes −0.326 1.511 352 1.406 0.546
KITTI-360 −5.000 1.550 192 1.469 0.635

annotations that support various tasks in semantic scene
understanding and geometric perception. For the ground-
truth depth data, we project mid-range LiDaR point clouds
onto the frontal RGB camera coordinates. Since the dataset
contains both nighttime and diverse weather sequences, we
select a set of sunny day segments from the validation set.
This results in 8117 validation images across 100 scenes.

nuScenes dataset [89]. This is an open-source dataset for
autonomous driving collected in urban environments in
Boston and Singapore. To obtain ground-truth depth data,
we project LiDaR scans onto the image coordinates using the
officially provided calibration parameters. We use a small
subset of the total dataset, consisting of 3000 test images
taken during daytime in sunny environments.

KITTI-360 dataset [90]. This is a dataset collected in
similar environments as KITTI, with different sensor con-
figurations and additional annotations focusing on semantic
scene understanding. We use this dataset to test the usability
of GenDepth on downstream tasks. In particular, we test
the performance of our monocular visual odometry (VO)
algorithm MOFT [19] on 9 provided sequences with ground-
truth poses obtained by precise OxTS INS measurements.

Evaluation metrics. For quantitative analysis and objec-
tive comparison, we use the established MDE metrics that
have been widely used in previous works [10], [14], [15]:
absolute relative error (Abs Rel), relative square error (Sq
Rel), root mean squared error (RMSE), root mean squared
log error (RMSE log), and accuracy δ under a threshold
τ ∈ {1.25, 1.252, 1.253}. Detailed equations can be found
in the Appendix.

Architecture and training details. As advocated in Section
4.4, we consider the use of convolutional feature encoders,
with the addition of self-attention mechanism in the deeper
layers to learn the relationships between spatially distant
features. Although our architecture is adaptable to any en-
coder model, in this work we use a simple ResNet 50 [70] en-
coder to limit the computational cost and allow a fair com-
parison with other methods. Due to the architectural limita-
tions of the encoder, we enforce H and W to be multiples
of 32. Following the encoder, our attention modules CFEBZ
and CFEBC consist of two transformer blocks, with channel
dimensions {1024, 512} and {512, 256}, respectively. The
stride s of depth-wise convolutions before the key and
value projections is set to 4. For our camera embeddings
E, we use k = 8 frequency bins. The decoder architecture
is similar to [10], with channel dimensions {128, 64, 16}

13

Fig. 9: Images and corresponding ground-truth depth maps from our publicly available dataset created in the CARLA
simulator. Samples are acquired with a diverse set of vehicle-camera systems in urban, rural and highway environments.

TABLE 2: Depth estimation results on the DDAD dataset [14]. Dataset – real-world data used in training. Supervision –
training loss used on the real-world data (M – monocular supervision, S – stereo supervision, v – velocity supervision, D
– ground-truth depth supervision). GT align – least squares alignment of the unknown scale and shift. The best results of
the zero-shot transfer are shown in bold.

Method Dataset Supervision GT align
Error ↓ Accuracy ↑

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 [10] KITTI M + S ✗ 0.378 5.268 14.606 0.599 0.201 0.457 0.740
DIFFNet [13] KITTI M + S ✗ 0.373 5.128 14.406 0.563 0.161 0.426 0.791

PackNet-SfM [14] KITTI M + v ✗ 0.369 5.500 15.127 0.576 0.195 0.452 0.764
MonoViT [16] KITTI M + S ✗ 0.218 2.912 11.469 0.357 0.556 0.831 0.928

PackNet-SfM [14] KITTI D ✗ 0.322 4.834 14.478 0.536 0.305 0.617 0.821
iDisc [18] KITTI D ✗ 0.274 3.993 13.304 0.461 0.384 0.743 0.884

NeWCRFs [7] KITTI D ✗ 0.337 5.450 15.572 0.571 0.302 0.629 0.792

RA-Depth [62] KITTI M ✓ 0.165 1.992 8.979 0.234 0.775 0.910 0.960
EPCDepth [61] KITTI M + S ✗ 0.301 3.956 12.820 0.469 0.293 0.686 0.889

PlaneDepth [15] KITTI M + S ✗ 0.327 4.760 13.955 0.529 0.379 0.467 0.792

MiDaS [25] Mix S ✓ 0.150 1.923 8.428 0.337 0.803 0.941 0.979
LeReS [24] Mix S ✓ 0.170 1.511 7.054 0.333 0.761 0.939 0.976

GenDepth KITTI S ✗ 0.121 1.421 6.992 0.200 0.840 0.954 0.983

PackNet-SfM [14] DDAD M ✓ 0.148 3.001 7.229 0.210 0.865 0.947 0.972
PackNet-SfM [14] DDAD D ✗ 0.080 1.202 6.105 0.170 0.915 0.966 0.990

for the respective upsampling layers. We use GELU [91]
activation functions in all modules after the encoder. Finally,
we estimate the depth map D ∈ [0, Dmax]

H×W , where we
set Dmax = 80 for all datasets.

As is common in MDE practice, the encoder is initialized
with pretrained ImageNet [92] weights, while the other
layers are initialized randomly. The model is trained with
the Adam optimizer [93], with exponential decay rates
β1 = 0.9 and β2 = 0.999. For the main experiments, each
batch consists of 4 samples of DS (CARLA) and 4 samples
of DT (KITTI). Since our training data contains images
with different resolutions that cannot be concatenated into
a single tensor, we implement a sampling strategy that
generates batches of images with the same resolutions. To
distribute the different resolutions to a single parameter
update, we perform gradient accumulation and update the
weights after 4 successive batches with different resolutions.
The learning rate µ is linearly decreased from 4 × 10−5

to 4 × 10−6. The training data is randomly augmented:

horizontal mirroring with 50% probability, and random
color changes in brightness, contrast, saturation and hue. We
define an epoch as a single processing of all images fromDS .
With such a definition, we train all models for 50 epochs.
All models are trained and tested on a single Nvidia RTX
A5000 GPU, resulting in a training time of approximately 38
hours for the main experiments, which include both DS and
DT training data. We argue that this represents a relatively
simple setup in terms of data and hardware capacity, further
demonstrating the efficiency of our method while achieving
the desired effectiveness.

5.2 Generalization ability experiments
In this section, we conduct a series of experiments that
demonstrate the superior generalization ability of our
method. First, we focus on the problem described in Section
4.1. From the datasets listed in Table 1, we use the CARLA
dataset as the source dataset DS and the KITTI dataset as
the target dataset DT . We then tested how well our method

14

generalizes to all vehicle camera systems in the target en-
vironmental domain ET , i.e., DTest = {DDAD, Argoverse,
nuScenes, Waymo}.
Quantitative results on the DDAD dataset. Table 2 shows
the results of the quantitative depth estimation. For com-
parison, we select representative state-of-the-art MDE meth-
ods, which include both supervised and self-supervised
approaches, and test their ability of zero-shot transfer to the
DDAD dataset. Considering that the training datasets are
collected in an environmental domain similar to DDAD, we
mainly test the generalization ability for different vehicle-
camera systems. Note that some of the methods trained
on the KITTI dataset provide official model weights, even
though they were trained on images with different res-
olutions than those in Table 1. To ensure consistency in
the domain gap of the camera parameters, we retrain all
methods on 640x192 images. Further results with median
scaling and a detailed description of the model architectures
can be found in the Appendix.

As shown in Table 2, all self-supervised methods trained
on KITTI perform poorly when tested on the DDAD dataset.
This is particularly evident when compared to the KITTI test
results in the corresponding publications. As originally sug-
gested in Section 3, the main cause of such a performance
drop is the overfitting to the perspective geometry of the
training dataset. Interestingly, Monovit [16], which utilizes
self-attention in the encoding stage, exhibits relatively better
robustness compared to purely convolutional methods [10],
[13], [14]. Moreover, the same performance degradation is
also observed for methods that use ground-truth depth
supervision during training. Although such methods per-
form much better on the training dataset than the self-
supervised approaches, they experience similar difficulties
when confronted with a domain gap caused by varying
camera parameters.

We also tested methods that supposedly achieve robust-
ness for a specific subset of camera parameter variations
by incorporating training data augmentations [15], [61],
[62], which should comparatively improve the performance.
First, we tested RA-Depth [62], which augments the data
to stimulate training with varying intrinsics. However, they
only train on monocular images, resulting in depth maps
of unknown scale. Therefore, we argue that this method
is not truly adaptable to different image resolutions, as it
cannot estimate metrically accurate depth maps. Even if the
estimated depth maps are aligned with the ground-truth
data, the error of RA-Depth is significantly higher than that
of GenDepth. PlaneDepth [15] also uses a similar augmen-
tation strategy that enables metrically accurate estimation
for different resolutions. However, this does not translate
well when tested on the DDAD dataset, as exhibited by
the performance drop similar to [10], [13], [16]. We believe
that there are two main resons for this: (i) training data
augmentation has a limited capacity, e.g., it can not increase
FoV or simulate extrinsic variations, (ii) the generalization
ability that can be achieved with such augmented data
is not easily transferable to other domains, as we show
in Section 5.3. Furthermore, we compare the performance
of EPCDepth [61], which uses data grafting in order to
encourage the model to focus on the relative object size cue.

TABLE 3: Depth estimation results on the Argoverse,
Waymo and nuScenes datasets. All method configurations
are the same as in Table 2.

Method Abs Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑

A
rg

ov
er

se

Monodepth2 0.501 17.210 0.800 0.090
iDisc 0.489 16.722 0.774 0.042

PlaneDepth 0.483 17.059 0.838 0.153
LeReS 0.138 5.294 0.202 0.828

GenDepth 0.135 6.520 0.190 0.840

W
ay

m
o

Monodepth2 0.399 13.626 0.618 0.167
iDisc 0.372 13.913 0.551 0.131

PlaneDepth 0.335 13.932 0.578 0.427
LeReS 0.192 6.277 0.329 0.720

GenDepth 0.154 7.680 0.213 0.828

nu
Sc

en
es

Monodepth2 0.281 11.109 0.456 0.478
iDisc 0.262 11.952 0.492 0.572

PlaneDepth 0.295 12.562 0.508 0.455
LeReS 0.202 6.458 0.300 0.688

GenDepth 0.175 7.980 0.256 0.752

Again, the results show that this is not a viable strategy for
zero-shot transfer.

Finally, we compare our method with the state-of-the-art
relative depth estimation methods MiDaS [25] and LeReS
[24]. These methods estimate depth up to unknown scale
and shift due to the use of diverse datasets during training,
thereby requiring alignment to the ground-truth data during
testing. In contrast, GenDepth achieves much more accurate
depth estimation without any test-time alignment. We argue
that this is primarily enabled by the additional information
added by our ground plane embeddings. Finally, to contex-
tualize our results, we report the results for PackNet-SfM
[14] trained on the DDAD dataset. Although we do not use
any DDAD data during training, GenDepth outperforms the
self-supervised PackNet-SfM, which is conceptually similar
due to the absence of real-world GT data during training.

Quantitative results on other datasets. We continue with
our quantitative evaluation on the Argoverse, Waymo and
nuScenes datasets. We selected representative methods and
evaluated their capability of zero-shot estimation on the
respective datasets in Table 3. Note that all the training
data and post-processing configurations were the same as
in Table 2. Again, we found that the traditional methods
exhibit strong performance degradation due to variations in
perspective geometry. The only method that is reasonably
competitive is LeReS, which does not predict the metric
depth and therefore requires ground-truth alignment during
testing.

Overall, GenDepth demonstrates an ability to generalize
across domains with varying camera parameters, especially
when compared to traditional MDE methods trained on
a single dataset. We achieve this with a relatively simple
training and data configuration without any fine-tuning,
post-processing, or retraining, while using only a single real-
world dataset without ground-truth labels.

DDAD qualitative results. To test whether our supe-

15

In
pu

t
M

on
od

ep
th

2
[1

0]
iD

is
c

[1
8]

Pl
an

eD
ep

th
[1

5]
Le

R
eS

[2
4]

Pa
ck

N
et

-S
fM

[1
4]

G
en

D
ep

th

Fig. 10: Qualitative results on the DDAD dataset, including both estimated depths (upper row) and Abs Rel error maps
(lower row). Green – low error, red – high error. The only method that uses DDAD data during training is self-supervised
PackNet-SfM.

rior quantitative results culminate in visually more accu-
rate depth maps, we provide qualitative comparisons here
for the DDAD dataset, while qualitative results for other
datasets can be found in the Appendix. Fig. 10 shows the
estimated depth maps and the corresponding error maps,
where the training configurations of the methods are the

same as in Table 2. As can be seen, all traditional methods
trained on a single dataset are strongly affected by the
induced domain gap. In contrast, as shown in the error
maps, the estimated depth maps of GenDepth are highly
consistent, both for the ground plane and for the objects on
it.

16

In
pu

t
Pa

ck
N

et
-S

fM
G

en
D

ep
th

Fig. 11: Examples of highly-detailed fine depth predictions on the DDAD dataset. We compare our method with the
ground-truth supervised PackNet-SfM trained on the DDAD data.

Fig. 12: Point cloud reconstructions on the DDAD, Argov-
erse and Waymo datasets. GenDepth method estimates con-
sistent metric depths, enabling authentic 3D reconstruction.

Fig. 11 shows the ability of the proposed GenDepth
method to predict depths of extremely detailed fine struc-
tures. We compare GenDepth with ground-truth-trained
PackNet-SfM, which uses training data from the same do-
main, i.e., from the DDAD dataset. Although the GenDepth
method has never seen DDAD data during training and
does not use any real-world ground-truth supervision, it can
estimate depth maps of higher structural quality (notice the
tree leaves, traffic signs, traffic poles, and even the wires of
power lines). This is primarily due to the precision of the
dense ground-truth data from the synthetic environment.

Fig. 11 also shows that PackNet-SfM has considerable
difficulty estimating the sky and other objects in the up-
per part of the image (such as traffic lights). This is a
common problem with all methods trained with LiDaR-
based ground-truth data. Since this data is sparse, the model
cannot distinguish between pixels outside the LiDaR range
and pixels for which no ground truth data is available. In
contrast, GenDepth uses easily generated, dense ground-
truth data from the simulation environment, which signifi-
cantly alleviates these problems. The problems with depth
estimation of objects in the upper half of the image are well
known, but performance degradations in these regions are
often neglected (e.g., the commonly used Garg crop [41]
masks out the upper part of the image in KITTI evaluation)
as they are considered irrelevant for safety-critical opera-
tion of autonomous vehicles. However, we argue that the
accurate overall structure of the depth map is crucial for
downstream applications such as SLAM [94], or novel view-
synthesis via NeRF [95]

In Fig. 12, we present point cloud reconstructions from
the higher view showing accurate 3D structure estimation
for three real-world datasets. In general, the qualitative re-
sults show that GenDepth performs very accurate structure
estimation for many objects that are not present in either
the source or target datasets. This means that GenDepth
learns meaningful structural priors and does not overfit to
the structure in the training data.

5.3 Ablations on real-world data
In Section 4.2 we described the possible ramifications of
the different design options. Due to the inherent nature of
our problem, generalization issues could arise due to both
camera parameters and environmental domain gaps. These
potential generalization issues are particularly evident in
our training setup where we exclusively use CARLA data
as the source domain data DS . Existing domain adaptation

17

TABLE 4: Quantitative ablation results on the DDAD dataset. CARLA, KITTI, GPE, DA, SN refer to the use of CARLA
data, KITTI data, ground plane embeddings, domain alignment via an adversarial discriminator and style normalization
during training.

CARLA KITTI GPE DA SN
Error ↓ Accuracy ↑

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

✓ 0.400 5.846 15.189 0.590 0.168 0.410 0.682
✓ 0.310 4.820 14.345 0.482 0.321 0.703 0.871

✓ ✓ 0.276 3.290 11.473 0.391 0.363 0.711 0.920
✓ ✓ 0.182 2.576 9.987 0.299 0.701 0.868 0.938
✓ ✓ ✓ 0.266 3.195 11.107 0.390 0.371 0.730 0.934
✓ ✓ ✓ 0.249 2.689 10.132 0.345 0.425 0.811 0.958
✓ ✓ ✓ ✓ 0.125 1.499 7.050 0.205 0.833 0.952 0.982
✓ ✓ ✓ ✓ ✓ 0.121 1.421 6.992 0.200 0.840 0.954 0.983

In
pu

t
C

K
C

K
C

G
C

K
G

C
K

G
D

Fig. 13: Qualitative ablation results. Abbreviations refer to
the columns in Table 4, i.e., CKG = (CARLA, KITTI, GPE).

approaches in MDE [50], [58] almost exclusively use the
VKITTI dataset [96] as the source domain, which is closer
to the KITTI dataset in both style and content.

Table 4 shows the ablation results for the DDAD dataset.
We examine the effects of different training configurations
to demonstrate the effectiveness of our contributions. In
addition, we compare the qualitative results for the same
configurations in Fig. 13. We refer to configurations via
abbreviations related to columns in Table 4, i.e., CKG =
(CARLA, KITTI, GPE)

First, we train our model using only CARLA data, which
contains images with different camera parameters. Surpris-
ingly, the qualitative results show that model can estimate
very fine and accurate 2D structures (C configuration), even
though it has never seen real-world data during training.
This is primarily enabled by the density of the CARLA
ground-truth depth, which facilitates extremely fine detec-
tion of object boundaries. However, the quantitative results
show that the estimated depths are largely inconsistent.
As already suggested (Fig. 5 top-left), the learned features
that inform the decoder about the camera parameters are
specific to the CARLA environmental domain, i.e., they do
not transfer well from ES to ET , which hampers the final
estimation.

Then, we train our model exclusively on KITTI data
with stereo self-supervision loss (K configuration). The large
camera parameters domain gap between KITTI and DDAD
precipitates our model to experience similar generalization
issues as the other state-of-the-art methods in Table 2. More-
over, the qualitative results in show similar patterns caused
by the low precision of the self-supervised training (poor
long-distance estimation, lack of fine structural details). As
expected, adding CARLA data to the training (CK con-
figuration) does not significantly improve the quantitative
results, again as a result of issues shown in Fig. 5, top-
left. On the other hand, a relatively simple combination
of CARLA data with supplementation of ground plane
embedding (GPE) demonstrates impressive generalization
results (CG configuration). The addition of GPE allows
a seamless transition of camera parameters generalization
capability from the source environmental domain ES to the
target environmental domain ET . The only issue is that the
estimated depths tend to be inconsistent for some objects
due to the large sim2real gap, as shown by the performance
gap compared to our results with the full configuration.

Somewhat confusingly, when trying to alleviate the
sim2real gap by adding the the KITTI data during train-
ing (CKG configuration), both quantitative and qualitative
performance drops significantly. We believe that the model
experiences issues as shown in Fig. 5, top-right. It acts
discriminatively, i.e., it recognizes that the DDAD images
belong to the target environmental domain ET and estimates
the depths as if the images were collected with the KITTI
vehicle-camera system, which is a vehicle-camera system

18

TABLE 5: Camera parameter configurations for several ab-
lative datasets collected in CARLA. For ease of comparison,
the values of fv and cv are expressed as a function of H .

Dataset α[°] h[m] H [px] fv[H] cv[H]

B 0 1.5 320 1.5 0.5
U [-10, 5] [1.0, 2.2] [160, 480] [0.85, 2.75] [0.4, 0.6]
Uα [-10, 5] 1.5 320 1.5 0.5
Uh 0 [1.0, 2.2] 320 1.5 0.5
UH 0 1.5 [160, 480] 1.5 0.5
Ufv 0 1.5 320 [0.85, 2.75] 0.5
Ucv 0 1.5 320 1.5 [0.4, 0.6]
D {-10, 2.5, 5} {1, 1.6, 2.2} {160, 320, 480} {0.85, 1.8, 2.75} {0.4, 0.5, 0.6}

associated with the ET in the training data, completely
ignoring the embedded camera parameters.

We then employ domain adversarial alignment to reduce
the sim2real gap. When the domain alignment is used
without GPE (CKD configuration), the discriminator can not
properly align the features due to varying camera parame-
ters in the source dataset (see Fig. 5 bottom-left). In contrast,
careful integration with GPE (CKGD configuration) results
in excellent generalization capability, both quantitatively
and qualitatively.

Finally, we examine the effects of style normalization
(CKGDS configuration). Although this simple normaliza-
tion technique leads to relatively small performance im-
provements, we include it in our final solution since it
requires only an insignificant increase in computation time
during training and no modifications during inference.

5.4 Ablations on synthetic data
Similarly as in [44], we perform a series of ablative experi-
ments on the synthetic data. We are mainly concerned with
the following analysis: (i) To what extend do the variations
of camera parameter impact the network accuracy? (ii) Can
the network learn features that enable generalization for dif-
ferent camera parameters when the training data contains a
diverse set of vehicle-camera systems? (iii) Do our proposed
ground plane embeddings (GPE) and CFEB layers increase
accuracy and generalization ability?

To address these concerns, we generate additional ab-
lative datasets in the CARLA simulator with parameter
configurations listed in Table 5. For example, dataset U is
acquired with random camera parameters within a certain
range, sampled from the corresponding uniform distribu-
tion. For each dataset, we create a 90%/10% training and
testing split. In particular, we perform the following ex-
periments without the domain discriminator and the con-
sequent domain alignment, since we only use the source
domain data DS .

First of all, in Table 6 we show the results of the
experiments with dataset U , which contains images with
different camera parameters. It can be seen that the baseline
architecture trained on a dataset with a fixed vehicle-camera
system B shows poor performance, which is due to the
perspective geometry bias in the training data. Conversely,
the baseline method trained on U performs surprisingly
well, suggesting that the model can leverage semantic cues
such as horizon level or field of view to infer informative
features indicative of the geometry of the current vehicle-
camera system. The addition of our attention-based CFEB

blocks further improves the performance, especially on the
outlier-sensitive metrics Sq Rel and RMSE. Furthermore, our
proposed ground-plane embedding significantly improves
the performance, proving the usefulness of the provided
information.

To isolate the effects of the individual parameters, we
perform a similar experiment, selectively varying only one
camera parameter in the entire dataset. In general, the
results are comparable, with a smaller difference in perfor-
mance gap between the Baseline architecture and CFEB +
GPE. Since only one parameter is varied, a model with the
same capacity can more easily learn informative features
specific to that camera parameter.

We would also like to discuss the results for the dataset
Ufv , which contains different focal lengths. Previous works
such as [21], [22] often emphasize the well-known focal
length depth ambiguity as a limitation that leads to mod-
els being unable to infer the metric depth when trained
on datasets with varying intrinsics. However, our results
suggest otherwise, as even the Baseline architecture, which
does not include embeddings that inform the network about
focal length, performed well. We believe that the model
effectively learns to estimate the sensor’s field of view,
which serves as an effective cue for estimating the focal
length and provides a consistent solution to the ambiguity
mentioned above.

Finally, we investigate whether our embedding leads
to an increased generalization ability for unseen camera
parameters. To this end, we train on the dataset D, which
includes three discrete samples of each parameter. Then, we
evaluate the generalization performance on U , i.e., how the
model estimates the depth for parameters between these
discrete samples. Our contributions lead to significantly
better quantitative results (last row in Table 6), confirming
that the model effectively learns the relationship between
the provided ground-plane depth and the depth of the
scene.

5.5 Additional experiments

Semantic accuracy. The embeddings provided to our model
are in fact the expected depths of the road surface. A
possible side effect of such a design is that the model might
learn to use the embeddings only for road surface depth
estimation. Since the road constitutes a fairly large part
of the image, this would lead to acceptable quantitative
performance, and hide the fact that the model does not
estimate accurate depths for the important objects in the
image.

Even though the error maps in Fig. 10 show an accurate
estimation for various object classes, we decided to verify
these results quantitatively. For each image from the DDAD
validation split, we determine the object class of each pixel
via the EfficientPS model [97] trained on the CityScapes
dataset [65]. Accordingly, we show the depth estimation
error per class in Fig. 14.

When compared with PackNet-SfM, it is obvious that
our model does not exhibit the aforementioned issues, with
particular outliers worthy of detailed analysis. First, as
expected, our method performs better on the road surface.

19

TABLE 6: Results of the different model and dataset configurations on synthetic data. Baseline architecture refers to the
standard encoder-decoder architecture from [10] with a ResNet 50 encoder. CFEB and GPE refer to use of our Content
Feature Enhancement Block and ground-plane embedding.

Architecture Training Testing
Error ↓ Accuracy ↑

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Baseline B U 0.301 2.156 7.500 0.310 0.475 0.831 0.942
Baseline U U 0.071 0.466 3.990 0.111 0.956 0.990 0.995

CFEB U U 0.066 0.416 3.573 0.105 0.959 0.991 0.996
CFEB + GPE U U 0.036 0.356 3.478 0.085 0.974 0.992 0.996

Baseline B Uα 0.237 1.210 5.634 0.190 0.711 0.935 0.989
Baseline Uα Uα 0.041 0.350 3.748 0.021 0.973 0.991 0.997

CFEB + GPE Uα Uα 0.030 0.331 3.608 0.078 0.979 0.992 0.997

Baseline B Uh 0.224 1.256 6.041 0.240 0.650 0.919 0.987
Baseline Uh Uh 0.042 0.326 3.599 0.089 0.961 0.990 0.996

CFEB + GPE Uh Uh 0.031 0.302 3.511 0.087 0.968 0.992 0.997

Baseline B Ufv 0.260 1.731 7.107 0.257 0.559 0.866 0.986
Baseline Ufv Ufv 0.036 0.347 3.721 0.083 0.976 0.991 0.997

CFEB + GPE Ufv Ufv 0.032 0.336 3.690 0.082 0.978 0.991 0.997

Baseline B Ucv 0.245 1.223 5.926 0.210 0.563 0.848 0.986
Baseline Ucv Ucv 0.039 0.406 3.737 0.081 0.974 0.986 0.996

CFEB + GPE Ucv Ucv 0.035 0.376 3.555 0.074 0.979 0.989 0.997

Baseline B UH 0.290 2.230 8.072 0.285 0.503 0.831 0.966
Baseline UH UH 0.048 0.399 3.782 0.090 0.973 0.986 0.996

CFEB + GPE UH UH 0.037 0.386 3.690 0.080 0.978 0.987 0.997

Baseline D U 0.143 0.728 5.120 0.191 0.802 0.956 0.985
CFEB + GPE D U 0.078 0.425 4.112 0.121 0.966 0.989 0.995

road terrain sidewalk car motorcycle bicyle wall person fence pole vegetation rider t. light t. sign building bus
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ab
sR

el

GenDepth
PackNet-SfM

Fig. 14: AbsRel errors for different semantic classes on the DDAD dataset, compared to self-supervised PackNet-SfM
trained on DDAD.

However, even though terrain and sidewalk are similar pla-
nar regions, GenDepth experiences a relative drop in perfor-
mance. This suggests that it may have trouble generalizing
our ground-plane embeddings to slightly elevated regions
compared to the road surface. Most importantly, GenDepth
performs exceptionally well on safety-critical objects such as
vehicles and pedestrians. PackNet-SfM struggles to estimate
such dynamic objects due to the nature of self-supervised
loss that comes from static scenes. Interestingly, GenDepth
estimates the depth of pedestrians quite well. This proves
the effectiveness of our domain alignment strategy since
our synthetic CARLA dataset does not contain models of
pedestrians.

Sensitivity analysis. Environmental perception tasks are of-
ten sensitive to the ever-changing perturbations that are not
present in the training data. Due to its inherently geometric
nature, MDE is particularly sensitive to calibration errors

0 10 20 30 40 50 60 70 80

Distance range (m)

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

A
b
sR

el

GenDepth

PackNet-SfM

0 10 20 30 40 50 60 70 80

Distance range (m)

1

2

5

10

20

R
M
S
E

GenDepth

PackNet-SfM

Fig. 15: AbsRel and RMSE for different distance ranges in
the DDAD dataset. We compare with the self-supervised
PackNet-SfM trained on DDAD. The histograms show the
distribution of ground-truth points.

20

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

σ [% of range]

0.12

0.14

0.16

0.18

0.20

0.22

0.24
A
b
sR

el
α

h

fv

cv

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

σ [% of range]

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

R
M
S
E

α

h

fv

cv

Fig. 16: AbsRel and RMSE for different noise levels on the
DDAD dataset. Noise levels are calculated as a percentage
of the admissible parameter range for our CARLA dataset,
as defined in Table 1.

that violate the perspective geometry assumptions. Our
ground plane embeddings explicitly require the accurate
camera calibration during test time, with the additional
assumptions of perpendicularity and planarity of the road
surface. Any violation of these assumptions could poten-
tially lead to metrically less accurate depth maps. This also
applies to other models trained on the single vehicle-camera
setup, albeit implicitly, as they overfit to the configuration
of the training data.

The road surface perturbation has a particularly detri-
mental effect on the accuracy of our embeddings for the
distant objects. Fig. 15 shows the performance of GenDepth
and PackNet-SfM for different distance ranges. Note that
unlike GenDepth, PackNet-SfM is trained in-domain, i.e., it
has seen the DDAD data during training. As shown, our
method has a sharper error inclination as depth increases.
However, we compensate for this with significantly better
performance in the nearby regions, which are more impor-
tant for safety-critical operations and constitute a higher
proportion of the overall image.

Since the camera parameters can change in real time
due to physical shocks or temperature fluctuations, we also
analyze the calibration sensitivity. In Fig. 16, known calibra-
tion parameters are perturbed with an additive Gaussian
noise with increasing standard deviation on the x-axis. As
expected, the errors increase in a fairly linear manner with
stronger perturbations. However, this is a standard behavior
of all camera-based geometric perception algorithms and
can be remedied by careful and accurate online calibration.

Visual odometry evaluation. Dense monocular depth can
be used as a strong source of information for many down-
stream tasks such as NeRFs [95], [98], geometric VO, and
SLAM [94], [99], [100]. It is particularly important for im-
proving monocular VO and SLAM algorithms that suffer
from excessive scale-drift and metric ambiguity. To test the
applicability of GenDepth, we use it within our monocular
VO MOFT [19] to improve both front-end tracking and back-
end optimization. Once again, GenDepth is used in zero-
shot mode, i.e., it has never seen KITTI-360 data during
training.

Fig. 17 shows the detected feature matches with inliers
and outliers after the RANSAC back-end optimization. It
is evident that the use of estimated depth during feature

Fig. 17: MOFT [19] feature matches and corresponding
depths on the KITTI-360 sequences. GenDepth depth esti-
mation enhances feature tracking and enables robust match-
ing with a high percentage of inliers (green matches) after
RANSAC optimization.

−1000 −750 −500 −250 0 250
x (m)

−1200

−1000

−800

−600

−400

−200

0

z
(m

)

Ground truth

ORB-SLAM2

MOFT (Monodepth2)

MOFT (GenDepth)

0 1000 2000 3000 4000
x (m)

0

1000

2000

3000

z
(m

)

Ground truth

ORB-SLAM2

MOFT (Monodepth2)

MOFT (GenDepth)

Sequence 03 Sequence 10

Fig. 18: Visual odometry trajectories on the KITTI-360
dataset. The fusion of estimated depths during MOFT back-
end optimization results in metrically accurate trajectories
on par with stereo ORB-SLAM2.

TABLE 7: Visual odometry translation error trel and rotation
error rrel for 9 sequences of KITTI-360. GenDepth enhances
geometric monocular odometry MOFT and enables results
on par with stereo ORB-SLAM2.

00 02 03 04 05 06 07 09 10

MOFT
trel 0.41 0.54 0.68 0.53 0.55 0.48 0.66 0.78 1.31
rrel 0.14 0.21 0.15 0.23 0.25 0.17 0.15 0.18 0.23

ORB-SLAM2
trel 0.33 0.58 0.49 0.52 0.46 0.52 5.08 1.07 1.73
rrel 0.15 0.23 0.17 0.22 0.25 0.18 0.97 0.18 0.43

tracking facilitates highly accurate and robust matching.
This enables MOFT to function as a simple frame-to-frame
monocular VO, without the complex monocular multi-
frame matching that often induces severe scale-drift in the
resulting trajectory.

We also use the estimated depth during back-end opti-
mization, which gives us metrically accurate trajectories, as
shown in Fig. 18. MOFT (GenDepth) performs significantly
better than MOFT (Monodepth2), which uses Monodepth2
[10] trained on KITTI. The latter experiences a high degree of
drift, as Monodepth2 is not able to overcome the camera pa-
rameters domain gap between KITTI and KITTI-360. Finally,
in Table 7, we evaluate the GenDepth-enhanced MOFT with
standard odometry metrics [63]. MOFT shows comparable
results with stereo ORB-SLAM2, while it is a simple frame-
to-frame monocular VO.

21

Fig. 19: Examples of error cases of our model.

Fig. 20: Adaptability to scenes that violate the assumption
of an ideal orthogonal ground plane. Our model can handle
moderate slopes in the training data, but performs poorly
on images with severe violations.

5.6 Limitations and discussion

MDE methods often experience intricate failures due to
the natural complexity of the task. In our case, we are
additionally dealing with domain gaps induced by both the
changes in perspective geometry due to the varying camera
parameters and environmental changes due to sim2real
adaptation. Although the latter has already been thoroughly
explored in the literature [47], [52], [55], it is especially
prominent in our setup due to the relative photo-realistic
simplicity of the CARLA simulator.

In Fig. 19 we present several error cases of our method.
For example, the first image shows a very cloudy sky, which
is in contrast to our CARLA dataset that includes mostly
clear weather. This large domain gap leads to an incorrect
depth estimation for the clouds. Another interesting exam-
ple is presented in the third image. The model is unable to
recognize the background building as a separate object, re-
sulting in a depth estimate as if the building was part of the
truck. The model essentially overfits to the vertical image
position cue, which may have been caused by the design of
our embeddings. However, our embeddings do not force the
model to use the vertical position cue exclusively, but merely
encode the camera parameters so that they can be used
for different vehicle-camera systems. In this way, the model
should make an informed decision depending on the object
class and position. Instead, what happens is probably a

domain gap issue; the model has not seen similar buildings
in the training data, which would enable their recognition
and delineation from foreground objects. Nonetheless, our
model generally does not encounter artifacts that are not
omnipresent in other MDE methods. Although some of
these artifacts are induced by the large sim2real domain gap,
we argue that the potential benefits of the synthetic data far
outweigh these problems.

Another possible limitation is that we rely on the ideal
flatness of the road surface. Fig. 20 shows our results for
images with high slopes of the ground plane. GenDepth
can easily adapt to the moderate slopes that are present in
the training data. However, severe slopes lead to a rather
inconsistent estimation of the depth map. This can be allevi-
ated by a more diverse data configuration or a simple online
estimation of the ground plane.

We would also like to address the problem of erroneous
calibration. As already mentioned, all MDE methods are
prone to these errors. Other works unfortunately often do
not take them into account, as they train and test the
models on the same vehicle-camera systems, unknowingly
overfitting to erroneous calibrations without any impact
on the quantitative performance. This is particularly the
case with methods that use LiDaR ground-truth data for
training. In addition to the erroneous camera calibrations,
these methods overfit to errors in multi-sensor calibrations,
used to project the LiDaR scans to camera coordinates.
Although this problem is already known [101], we have
observed a particularly severe case of this problem in the
KITTI dataset, which is usually a primary training and
testing dataset for many state-of-the-art methods [15], [18].
On the other hand, our model uses synthetic data that
naturally has proper camera calibration and ground-truth
data, which avoids overfitting to the erroneous calibrations
of the specific camera model. This leads to rather confusing
negative ramifications; when evaluated on popular real-
world benchmarks, the results of our model may appear
worse than they actually are.

Overall, we have shown impressive generalization re-
sults despite the large domain gap, the relatively simple
data configuration, and the domain alignment procedure.
Furthermore, we have demonstrated the advantages of a
dense ground-truth depth that allows accurate estimation

22

of complicated structures compared to methods trained on
real-world data, especially for image regions without LiDaR
scans. This leads us to believe that the synthetic datasets,
together with the proper use of domain adaptation and do-
main generalization techniques, are far underutilized in the
current MDE literature dealing with autonomous driving
scenarios. Existing approaches to domain adaptation [47],
[49], [50], [52], [53], [54], [55], [56], [58] are almost exclusively
limited to the VKITTI→ KITTI configuration. On the other
hand, domain generalization approaches [24], [25] merely
train on a large-scale real-world data without ground-truth
annotations, which means that the depths can only be esti-
mated up to an unknown scale and shift. This is in contrast
to works in other fields, such as semantic segmentation,
which have an established and proven method for robust
domain generalization [102], [103]. Therefore, we believe
that future MDE research should follow similar avenues.

6 CONCLUSION AND FUTURE WORK

In this paper, we present GenDepth, a novel MDE frame-
work developed to overcome perspective geometry bias
and provide accurate depth estimation for different vehicle-
camera systems. After a thorough analysis and discussion
of the effects of parameter variations on the MDE and
potential problems, we proposed to use highly diverse
synthetic data during training, thereby framing the problem
as a sim2real adaptation. To that end, we have collected a
bespoke synthetic dataset featuring many different vehicle-
camera setups. To inform the network about the known
camera parameters, we propose to embed intrinsics and
extrinsics together as the depth of the ground plane. This
embedding is then carefully integrated with the adversar-
ial domain alignment, eliminating potential generalization
limitations due to large domain gaps. Finally, we have thor-
oughly validated GenDepth on several real-world datasets,
showcasing state-of-the-art generalization capability that is
not present in existing approaches. In addition to the specific
beneficial effects of our contributions, our detailed ablation
experiments showcase the potential of using synthetically
generated ground-truth data, even in relatively simple con-
figurations. These findings suggest that future research op-
portunities in MDE lie in the application of domain gen-
eralization techniques to a combination of real-world and
diverse synthetically generated data, which can mitigate
perspective geometry biases and enable the estimation of
finer and more accurate depth maps.

REFERENCES

[1] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from
a single image using a multi-scale deep network,” Advances in
neural information processing systems, vol. 27, 2014.

[2] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual net-
works,” in 2016 Fourth international conference on 3D vision (3DV).
IEEE, 2016, pp. 239–248.

[3] A. CS Kumar, S. M. Bhandarkar, and M. Prasad, “Depthnet:
A recurrent neural network architecture for monocular depth
prediction,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2018, pp. 283–291.

[4] M. Mancini, G. Costante, P. Valigi, T. A. Ciarfuglia, J. Delmerico,
and D. Scaramuzza, “Toward domain independence for learning-
based monocular depth estimation,” IEEE Robotics and Automa-
tion Letters, vol. 2, no. 3, pp. 1778–1785, 2017.

[5] B. Li, C. Shen, Y. Dai, A. Van Den Hengel, and M. He, “Depth
and surface normal estimation from monocular images using
regression on deep features and hierarchical crfs,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1119–1127.

[6] W. Yin, Y. Liu, C. Shen, and Y. Yan, “Enforcing geometric con-
straints of virtual normal for depth prediction,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2019,
pp. 5684–5693.

[7] W. Yuan, X. Gu, Z. Dai, S. Zhu, and P. Tan, “Newcrfs: Neural
window fully-connected crfs for monocular depth estimation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2022.

[8] S. F. Bhat, I. Alhashim, and P. Wonka, “Adabins: Depth estimation
using adaptive bins,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 4009–4018.

[9] A. Agarwal and C. Arora, “Attention attention everywhere:
Monocular depth prediction with skip attention,” in Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision,
2023, pp. 5861–5870.

[10] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow,
“Digging into self-supervised monocular depth estimation,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 3828–3838.

[11] H. Zhan, R. Garg, C. S. Weerasekera, K. Li, H. Agarwal, and
I. Reid, “Unsupervised learning of monocular depth estima-
tion and visual odometry with deep feature reconstruction,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 340–349.

[12] R. Li, S. Wang, Z. Long, and D. Gu, “Undeepvo: Monocular visual
odometry through unsupervised deep learning,” in 2018 IEEE
international conference on robotics and automation (ICRA). IEEE,
2018, pp. 7286–7291.

[13] H. Zhou, D. Greenwood, and S. Taylor, “Self-supervised monoc-
ular depth estimation with internal feature fusion,” in British
Machine Vision Conference (BMVC), 2021.

[14] V. Guizilini, R. Ambrus, S. Pillai, A. Raventos, and A. Gaidon,
“3d packing for self-supervised monocular depth estimation,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 2485–2494.

[15] R. Wang, Z. Yu, and S. Gao, “Planedepth: Self-supervised depth
estimation via orthogonal planes,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp.
21 425–21 434.

[16] C. Zhao, Y. Zhang, M. Poggi, F. Tosi, X. Guo, Z. Zhu, G. Huang,
Y. Tang, and S. Mattoccia, “Monovit: Self-supervised monocular
depth estimation with a vision transformer,” in 2022 International
Conference on 3D Vision (3DV). IEEE, 2022, pp. 668–678.

[17] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017,
pp. 1851–1858.

[18] L. Piccinelli, C. Sakaridis, and F. Yu, “idisc: Internal discretization
for monocular depth estimation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp.
21 477–21 487.

[19] K. Koledić, I. Cvišić, I. Marković, and I. Petrović, “Moft: Monoc-
ular odometry based on deep depth and careful feature selection
and tracking,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2023, pp. 6175–6181.

[20] Y. Zhao, S. Kong, and C. Fowlkes, “Camera pose matters: Im-
proving depth prediction by mitigating pose distribution bias,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 15 759–15 768.

[21] J. M. Facil, B. Ummenhofer, H. Zhou, L. Montesano, T. Brox, and
J. Civera, “Cam-convs: Camera-aware multi-scale convolutions
for single-view depth,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 11 826–
11 835.

[22] L. He, G. Wang, and Z. Hu, “Learning depth from single images
with deep neural network embedding focal length,” IEEE Trans-
actions on Image Processing, vol. 27, no. 9, pp. 4676–4689, 2018.

[23] W. Chen, Z. Fu, D. Yang, and J. Deng, “Single-image depth
perception in the wild,” Advances in neural information processing
systems, vol. 29, 2016.

23

[24] W. Yin, J. Zhang, O. Wang, S. Niklaus, L. Mai, S. Chen, and
C. Shen, “Learning to recover 3d scene shape from a single
image,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 204–213.

[25] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun,
“Towards robust monocular depth estimation: Mixing datasets
for zero-shot cross-dataset transfer,” IEEE transactions on pattern
analysis and machine intelligence, vol. 44, no. 3, pp. 1623–1637, 2020.

[26] K. Xian, C. Shen, Z. Cao, H. Lu, Y. Xiao, R. Li, and Z. Luo,
“Monocular relative depth perception with web stereo data su-
pervision,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 311–320.

[27] W. Yin, X. Wang, C. Shen, Y. Liu, Z. Tian, S. Xu, C. Sun, and
D. Renyin, “Diversedepth: Affine-invariant depth prediction us-
ing diverse data,” arXiv preprint arXiv:2002.00569, 2020.

[28] C. Wang, S. Lucey, F. Perazzi, and O. Wang, “Web stereo video
supervision for depth prediction from dynamic scenes,” in 2019
International Conference on 3D Vision (3DV). IEEE, 2019, pp. 348–
357.

[29] K. Xian, J. Zhang, O. Wang, L. Mai, Z. Lin, and Z. Cao, “Structure-
guided ranking loss for single image depth prediction,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 611–620.

[30] Z. Li and N. Snavely, “Megadepth: Learning single-view depth
prediction from internet photos,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2018, pp. 2041–2050.

[31] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“Carla: An open urban driving simulator,” in Conference on robot
learning. PMLR, 2017, pp. 1–16.

[32] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical image computing and computer-assisted inter-
vention. Springer, 2015, pp. 234–241.

[33] D. Xu, W. Wang, H. Tang, H. Liu, N. Sebe, and E. Ricci, “Struc-
tured attention guided convolutional neural fields for monocular
depth estimation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 3917–3925.

[34] F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields
for depth estimation from a single image,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015,
pp. 5162–5170.

[35] H. Jung, Y. Kim, D. Min, C. Oh, and K. Sohn, “Depth prediction
from a single image with conditional adversarial networks,”
in 2017 IEEE International Conference on Image Processing (ICIP).
IEEE, 2017, pp. 1717–1721.

[36] K. G. Lore, K. Reddy, M. Giering, and E. A. Bernal, “Generative
adversarial networks for depth map estimation from rgb video,”
in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW). IEEE, 2018, pp. 1258–12 588.

[37] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
et al., “An image is worth 16x16 words: Transformers for image
recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[38] Z. Li, Z. Chen, X. Liu, and J. Jiang, “Depthformer: Exploiting
long-range correlation and local information for accurate monoc-
ular depth estimation,” arXiv preprint arXiv:2203.14211, 2022.

[39] W. Zhao, Y. Rao, Z. Liu, B. Liu, J. Zhou, and J. Lu, “Unleash-
ing text-to-image diffusion models for visual perception,” arXiv
preprint arXiv:2303.02153, 2023.

[40] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec,
V. Khalidov, P. Fernandez, D. Haziza, F. Massa, A. El-Nouby, et al.,
“Dinov2: Learning robust visual features without supervision,”
arXiv preprint arXiv:2304.07193, 2023.

[41] R. Garg, V. K. Bg, G. Carneiro, and I. Reid, “Unsupervised cnn
for single view depth estimation: Geometry to the rescue,” in
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part VIII 14.
Springer, 2016, pp. 740–756.

[42] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised
monocular depth estimation with left-right consistency,” in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 270–279.

[43] L. Han, Y. Lin, G. Du, and S. Lian, “Deepvio: Self-supervised
deep learning of monocular visual inertial odometry using 3d
geometric constraints,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 6906–
6913.

[44] K. Koledić, I. Marković, and I. Petrović, “Towards camera pa-
rameters invariant monocular depth estimation in autonomous
driving,” in 2023 European Conference on Mobile Robots (ECMR).
IEEE, 2023, pp. 1–7.

[45] J. Hoffman, D. Wang, F. Yu, and T. Darrell, “Fcns in the wild:
Pixel-level adversarial and constraint-based adaptation,” arXiv
preprint arXiv:1612.02649, 2016.

[46] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial
discriminative domain adaptation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp.
7167–7176.

[47] A. Atapour-Abarghouei and T. P. Breckon, “Real-time monocular
depth estimation using synthetic data with domain adaptation
via image style transfer,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 2800–2810.

[48] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko,
A. Efros, and T. Darrell, “Cycada: Cycle-consistent adversarial
domain adaptation,” in International conference on machine learn-
ing. Pmlr, 2018, pp. 1989–1998.

[49] J. N. Kundu, P. K. Uppala, A. Pahuja, and R. V. Babu, “Adadepth:
Unsupervised content congruent adaptation for depth estima-
tion,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 2656–2665.

[50] C. Zheng, T.-J. Cham, and J. Cai, “T2net: Synthetic-to-realistic
translation for solving single-image depth estimation tasks,” in
Proceedings of the European conference on computer vision (ECCV),
2018, pp. 767–783.

[51] Y.-C. Chen, Y.-Y. Lin, M.-H. Yang, and J.-B. Huang, “Crdoco:
Pixel-level domain transfer with cross-domain consistency,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2019, pp. 1791–1800.

[52] S. Zhao, H. Fu, M. Gong, and D. Tao, “Geometry-aware sym-
metric domain adaptation for monocular depth estimation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 9788–9798.

[53] H. Akada, S. F. Bhat, I. Alhashim, and P. Wonka, “Self-supervised
learning of domain invariant features for depth estimation,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2022, pp. 3377–3387.

[54] S.-Y. Lo, W. Wang, J. Thomas, J. Zheng, V. M. Patel, and C.-
H. Kuo, “Learning feature decomposition for domain adaptive
monocular depth estimation,” in 2022 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2022, pp.
8376–8382.

[55] A. Gurram, A. F. Tuna, F. Shen, O. Urfalioglu, and A. M. López,
“Monocular depth estimation through virtual-world supervision
and real-world sfm self-supervision,” IEEE Transactions on Intelli-
gent Transportation Systems, vol. 23, no. 8, pp. 12 738–12 751, 2021.

[56] K. PNVR, H. Zhou, and D. Jacobs, “Sharingan: Combining syn-
thetic and real data for unsupervised geometry estimation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 13 974–13 983.

[57] B. Cheng, I. S. Saggu, R. Shah, G. Bansal, and D. Bharadia,
“S 3 net: Semantic-aware self-supervised depth estimation with
monocular videos and synthetic data,” in European Conference on
Computer Vision. Springer, 2020, pp. 52–69.

[58] A. Lopez-Rodriguez and K. Mikolajczyk, “Desc: Domain adapta-
tion for depth estimation via semantic consistency,” International
Journal of Computer Vision, vol. 131, no. 3, pp. 752–771, 2023.

[59] S. Saha, A. Obukhov, D. P. Paudel, M. Kanakis, Y. Chen, S. Geor-
goulis, and L. Van Gool, “Learning to relate depth and seman-
tics for unsupervised domain adaptation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 8197–8207.

[60] T. v. Dijk and G. d. Croon, “How do neural networks see depth
in single images?” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 2183–2191.

[61] R. Peng, R. Wang, Y. Lai, L. Tang, and Y. Cai, “Excavating the po-
tential capacity of self-supervised monocular depth estimation,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 15 560–15 569.

[62] M. He, L. Hui, Y. Bian, J. Ren, J. Xie, and J. Yang, “Ra-depth: Res-
olution adaptive self-supervised monocular depth estimation,”
in European Conference on Computer Vision. Springer, 2022, pp.
565–581.

[63] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets
robotics: The kitti dataset,” The International Journal of Robotics
Research, vol. 32, no. 11, pp. 1231–1237, 2013.

24

[64] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year,
1000 km: The oxford robotcar dataset,” The International Journal of
Robotics Research, vol. 36, no. 1, pp. 3–15, 2017.

[65] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes
dataset for semantic urban scene understanding,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2016, pp. 3213–3223.

[66] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays, “Argoverse:
3d tracking and forecasting with rich maps,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[67] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes:
A multimodal dataset for autonomous driving,” arXiv preprint
arXiv:1903.11027, 2019.

[68] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik,
P. Tsui, J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han,
J. Ngiam, H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao,
A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalabil-
ity in perception for autonomous driving: Waymo open dataset,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

[69] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng, “Nerf: Representing scenes as neural
radiance fields for view synthesis,” Communications of the ACM,
vol. 65, no. 1, pp. 99–106, 2021.

[70] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[71] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie,
“A convnet for the 2020s,” in Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, 2022, pp. 11 976–
11 986.

[72] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[73] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,
V. Golkov, P. Van Der Smagt, D. Cremers, and T. Brox, “Flownet:
Learning optical flow with convolutional networks,” in Proceed-
ings of the IEEE international conference on computer vision, 2015,
pp. 2758–2766.

[74] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers
for dense prediction,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 12 179–12 188.

[75] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference
on computer vision, 2021, pp. 10 012–10 022.

[76] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo,
and L. Shao, “Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2021, pp.
568–578.

[77] J. Li, X. Xia, W. Li, H. Li, X. Wang, X. Xiao, R. Wang, M. Zheng,
and X. Pan, “Next-vit: Next generation vision transformer for ef-
ficient deployment in realistic industrial scenarios,” arXiv preprint
arXiv:2207.05501, 2022.

[78] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-
time style transfer and super-resolution,” in Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part II 14. Springer, 2016, pp.
694–711.

[79] X. Huang and S. Belongie, “Arbitrary style transfer in real-time
with adaptive instance normalization,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 1501–1510.

[80] M. A. Islam, S. Jia, and N. D. Bruce, “How much position
information do convolutional neural networks encode?” arXiv
preprint arXiv:2001.08248, 2020.

[81] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv preprint arXiv:1607.06450, 2016.

[82] F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 1251–1258.

[83] Y. Li, K. Zhang, J. Cao, R. Timofte, and L. Van Gool, “Lo-
calvit: Bringing locality to vision transformers,” arXiv preprint
arXiv:2104.05707, 2021.

[84] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[85] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612,
2004.

[86] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative ad-
versarial nets,” Advances in neural information processing systems,
vol. 27, 2014.

[87] D. Eigen and R. Fergus, “Predicting depth, surface normals
and semantic labels with a common multi-scale convolutional
architecture,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 2650–2658.

[88] J. K. Pontes, J. Hays, and S. Lucey, “Scene flow from point clouds
with or without learning,” in 2020 international conference on 3D
vision (3DV). IEEE, 2020, pp. 261–270.

[89] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 11 621–11 631.

[90] Y. Liao, J. Xie, and A. Geiger, “Kitti-360: A novel dataset and
benchmarks for urban scene understanding in 2d and 3d,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

[91] D. Hendrycks and K. Gimpel, “Gaussian error linear units
(gelus),” arXiv preprint arXiv:1606.08415, 2016.

[92] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet
large scale visual recognition challenge,” International journal of
computer vision, vol. 115, pp. 211–252, 2015.

[93] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[94] Z. Teed and J. Deng, “Droid-slam: Deep visual slam for monoc-
ular, stereo, and rgb-d cameras,” Advances in neural information
processing systems, vol. 34, pp. 16 558–16 569, 2021.

[95] B. Roessle, J. T. Barron, B. Mildenhall, P. P. Srinivasan, and
M. Nießner, “Dense depth priors for neural radiance fields from
sparse input views,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 12 892–12 901.

[96] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as
proxy for multi-object tracking analysis,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016,
pp. 4340–4349.

[97] R. Mohan and A. Valada, “Efficientps: Efficient panoptic segmen-
tation,” International Journal of Computer Vision, vol. 129, no. 5, pp.
1551–1579, 2021.

[98] K. Deng, A. Liu, J.-Y. Zhu, and D. Ramanan, “Depth-supervised
nerf: Fewer views and faster training for free,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 12 882–12 891.

[99] N. Yang, R. Wang, J. Stuckler, and D. Cremers, “Deep virtual
stereo odometry: Leveraging deep depth prediction for monocu-
lar direct sparse odometry,” in Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2018, pp. 817–833.

[100] N. Yang, L. v. Stumberg, R. Wang, and D. Cremers, “D3vo: Deep
depth, deep pose and deep uncertainty for monocular visual
odometry,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 1281–1292.

[101] I. Cvišić, I. Marković, and I. Petrović, “Recalibrating the kitti
dataset camera setup for improved odometry accuracy,” in 2021
European Conference on Mobile Robots (ECMR). IEEE, 2021, pp.
1–6.

[102] D. Peng, Y. Lei, M. Hayat, Y. Guo, and W. Li, “Semantic-aware do-
main generalized segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
2594–2605.

[103] Y. Zhao, Z. Zhong, N. Zhao, N. Sebe, and G. H. Lee, “Style-
hallucinated dual consistency learning: A unified framework for
visual domain generalization,” International Journal of Computer
Vision, pp. 1–17, 2023.

[104] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu,
Y. Mu, M. Tan, X. Wang, et al., “Deep high-resolution representa-
tion learning for visual recognition,” IEEE transactions on pattern
analysis and machine intelligence, vol. 43, no. 10, pp. 3349–3364,
2020.

25

[105] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated resid-
ual transformations for deep neural networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017,
pp. 1492–1500.

[106] S. Gasperini, N. Morbitzer, H. Jung, N. Navab, and F. Tombari,
“Robust monocular depth estimation under challenging condi-
tions,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2023, pp. 8177–8186.

APPENDIX

Evaluation metrics equations
Given the estimated depths di and ground truth depths d̂i
at pixel i, the metrics used in this work can be calculated as:

AbsRel :
1

|D̂|
∑
i

|di − d̂i|
d̂i

(32)

SqRel :
1

|D̂|
∑
i

(di − d̂i)2
d̂i

(33)

RMSE :

√
1

|D̂|
∑
i

(di − d̂i)2 (34)

RMSElog :

√
1

|D̂|
∑
i

(log10 di − log10 d̂i)
2 (35)

δ < τ : % of di s.t. max

(
di

d̂i
,
d̂i
di

)
< τ, (36)

where |D̂| represents the cardinality of the possibly sparse
ground truth depth map after the selection of viable pixels.

Additional quantitative results

TABLE 8: Network architecture details and ablation of com-
putational complexity. All execution times are measured
during inference with a Nvidia RTX A5000 GPU on the
DDAD dataset. All methods use 640x384 resolution, except
MiDaS and LeReS, which use 384x384 and 448x448, respec-
tively.

Method Encoder Execution time Params #

Monodepth2 [10] ResNet-18 [70] 5.70 ms 14.84 M
DIFFNet [13] HRNet-18 [104] 33.02 ms 10.87 M

PackNet-SfM [14] Custom 55.87 ms 129.89 M
MonoViT [16] Custom 37.42 ms 27.87 M

iDisc [18] ResNet-101 [70] 65.48 ms 58.94 M
NeWCRFs [7] Swin-L [75] 59.56 ms 270.44 M

EPCDepth [61] ResNet-50 [70] 18.28 ms 26.86 M
PlaneDepth [15] ResNet-50 [70] 16.72 ms 39.14 M

MiDaS [25] ResNeXt-101 [105] 24.56ms 105.36 M
LeReS [24] ResNet-50 [70] 18.90 ms 52.13 M
GenDepth ResNet-50 [70] 22.67 ms 35.95 M

In Table 8 we specify the architecture details and corre-
sponding execution times for methods used throughout this
work. Execution time is averaged for inference on the whole
DDAD validation split. GenDepth exhibits competitive real-
time performance, despite solving a relatively complex
generalization problem compared to other methods. Even
though we use a simple ResNet-50 network for feature
extraction, GenDepth estimates finer depth maps of higher
structural quality when compared to recent methods such
as iDisc [18], which usually use complex architectures with
higher execution times. This challenges the current trend of
small incremental improvements in MDE performance via
architecture engineering and indicates the value of high-
quality diverse ground-truth data without perspective ge-
ometry biases.

Furthermore, in Table 9 we examine the effects of me-
dian scaling during inference. Even though median scaling
generally improves the quantitative performance, none of
the methods achieve competitive results compared to Gen-
Depth. This means that the domain gap induced by vary-
ing camera parameters leads to highly inconsistent depth
map estimation, which can not be scale-aligned via fusion
with another sensor. On the contrary, GenDepth achieves
accurate metric estimation both with and without scale
alignment. Our results generated with median scaling are
slightly better, possibly due to the small calibration errors
on the DDAD dataset.

Qualitative results on additional datasets
We show additional qualitative results on the KITTI-360,
nuScenes, Waymo, Argoverse and DDAD datasets. All
depth maps are generated with a single model trained
with a data configuration as in Fig. 4. Our depth maps
are highly precise, exhibiting extremely fine details when
compared to current state-of-the-art approaches, even if
they are trained and tested on the same dataset. Overall,
we demonstrate impressive generalization capability on all
datasets, despite never using them during training. In Fig.
24 we also include two images captured during night-time,
which usually presents a significant issue for MDE methods.
Even in such scenario, GenDepth accurately estimates key
objects, indicating that it learns meaningful geometric priors
which are easily transferable across environmental domains.

26

TABLE 9: Depth estimation results on the DDAD dataset [14] after training on the KITTI dataset [63]. Compared to Table
2, we include results with median scaling alignment w.r.t. the ground-truth depth.

Method Supervision Median scaling
Error ↓ Accuracy ↑

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 [10] M + S
✗ 0.378 5.268 14.606 0.599 0.201 0.457 0.740
✓ 0.235 2.482 9.638 0.335 0.581 0.838 0.940

DIFFNet [13] M + S
✗ 0.373 5.128 14.406 0.563 0.161 0.426 0.791
✓ 0.199 1.947 8.413 0.275 0.683 0.896 0.967

PackNet-SfM [14] M + v
✗ 0.369 5.500 15.127 0.576 0.195 0.452 0.764
✓ 0.215 2.121 8.951 0.297 0.646 0.880 0.962

Monovit [16] M + S
✗ 0.218 2.912 11.469 0.357 0.556 0.831 0.928
✓ 0.197 1.932 8.912 0.276 0.661 0.916 0.968

PackNet-SfM [14] D
✗ 0.322 4.834 14.478 0.536 0.305 0.617 0.821
✓ 0.250 2.672 10.054 0.350 0.574 0.837 0.937

iDisc [18] D
✗ 0.274 3.993 13.304 0.461 0.384 0.743 0.884
✓ 0.215 2.244 9.407 0.312 0.656 0.886 0.949

NeWCRFs [7] D
✗ 0.337 5.450 15.572 0.571 0.302 0.629 0.792
✓ 0.356 4.091 11.911 0.449 0.436 0.704 0.861

EPCDepth [61] M + S
✗ 0.301 3.956 12.820 0.469 0.293 0.686 0.889
✓ 0.226 2.310 8.924 0.311 0.648 0.866 0.952

PlaneDepth [15] M + S
✗ 0.327 4.760 13.955 0.529 0.379 0.467 0.792
✓ 0.337 3.175 10.015 0.386 0.312 0.772 0.949

GenDepth S
✗ 0.121 1.421 6.992 0.200 0.840 0.954 0.983
✓ 0.114 1.370 6.878 0.185 0.865 0.958 0.984

Fig. 21: Qualitative results on the KITTI-360 dataset.

27

Fig. 22: Qualitative results on the nuScenes dataset.

Fig. 23: Qualitative results on the Waymo dataset.

28

Fig. 24: Qualitative results on the Argoverse dataset. We also show results for nigh-time images, exemplifying GenDepth
generalization ability for extreme domain gaps which are usually problematic for other methods [106].

.

Fig. 25: Additional qualitative results on the DDAD dataset.

	Introduction
	Related Work
	Monocular depth estimation
	Domain generalization for monocular depth estimation
	Domain adaptation for monocular depth estimation

	Challenges of camera parameter variations
	Overfitting to vertical image position
	Diverse data generation

	Method
	Problem statement
	Design considerations
	Ground plane embedding
	Model architecture
	Optimization

	Experimental evaluation
	Evaluation details
	Generalization ability experiments
	Ablations on real-world data
	Ablations on synthetic data
	Additional experiments
	Limitations and discussion

	Conclusion and future work
	References

