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Abstract— Autonomous localization in unknown environ-
ments is a fundamental problem in many emerging fields and
the monocular visual approach offers many advantages, due to
being a rich source of information and avoiding comparatively
more complicated setups and multisensor calibration. Deep
learning opened new venues for monocular odometry yielding
not only end-to-end approaches but also hybrid methods com-
bining the well studied geometry with specific deep components.
In this paper we propose a monocular odometry that leverages
deep depth within a feature based geometrical framework
yielding a lightweight frame-to-frame approach with metrically
scaled trajectories and state-of-the-art accuracy. The front-
end is based on a multihypothesis matcher with perspective
correction coupled with deep depth predictions that enables
careful feature selection and tracking; especially of ground
plane features that are suitable for translation estimation. The
back-end is based on point-to-epipolar line minimization for
rotation and unit translation estimation, followed by deep depth
aided reprojection error minimization for metrically correct
translation estimation. Furthermore, we also present a domain
shift adaptation approach that allows for generalization over
different camera intrinsic and extrinsic setups. The proposed
approach is evaluated on the KITTI and KITTI-360 datasets,
showing competitive results and in most cases outperforming
other state-of-the-art stereo and monocular methods.

I. INTRODUCTION

Localization of an autonomous agent within an unknown
environment is a fundamental problem in various emerg-
ing fields, such as autonomous driving and virtual reality.
Most methods use a combination of proprioceptive and
exteroceptive sensors. While fusion of information from
many complementary sensors offers increased robustness
and accuracy compared to a single sensor, it also compar-
atively complicates sensor setup and calibration. Cameras
offer rich information about immediate surrounding, while
being relatively cheap and widely available, thus motivating
localization from a single sensor within Visual Odometry
(VO) or Visual Simultaneous Localization and Mapping (V-
SLAM) frameworks.

Most VO methods belong to the class of feature-based
approaches, which extract a sparse set of image features and
match them across multiple frames [1]–[3]. On the other
hand, direct methods [4], [5] optimize photometric error,
therefore skipping costly pre-processing step and achieving
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superior performance in textureless regions. The classic
geometric VO frameworks are often challenged by scenarios
that include motion blur, textureless regions, occlusions,
and many dynamic objects. Given that, with advancements
in deep learning, learning-based methods have been pro-
posed to tackle these issues. By leveraging large amount
of data, neural networks can extract appropriate features,
thus enabling robustness even in difficult scenarios. End-
to-end learning has been used in both supervised [6] and
self-supervised formulations [7], [8], where networks usually
jointly learn depth maps and ego-motion. However, end-to-
end deep learning based solutions generally underperform
compared to geometric methods. The most obvious issue is
that it is challenging to enforce convolutional networks to
learn the well studied and formulated geometric background
of the problem and the networks will usually overfit due
to the biased data distribution in the training set [9]. Al-
though providing networks with sufficiently diverse data may
mitigate the overfitting problem [10], the collection of data
with sufficiently diverse camera intrinsics and extrinsincs in
distinctive environments is by and large impractical.

In order to circumvent these issues, works such as [11]–
[14] use deep learning, particularly depth prediction net-
works, within well-formulated geometric frameworks in or-
der to complement its shortcomings and increase robustness.
This is particularly useful in monocular VO, where predicted
depth significantly reduces the often encountered scale-drift.
Additionally, by inducing metric scale into the training
process (e.g., by using stereo sequences [15]), networks
can produce accurately scaled depth maps during inference
with monocular inputs. This enables such hybrid systems
to produce correctly scaled trajectories while using only
a single camera. For example, D3VO [11] achieves such
formulation via tight integration of Monodepth2 [15] inspired
deep network and DSO [5].

In order to estimate metrically scaled trajectories,
depth prediction networks are frequently trained with
stereo sequences, making the training self-supervised and
collection of data within distinctive automotive environments
relatively straightforward. However, hybrid methods do
not consider possible variations in camera extrinsics and
intrinsics compared to the training setup. In [16]–[18] it was
shown that depth prediction quality reduces with different
cameras, even in similar environments. In order to estimate
the metrically scaled trajectory, the monocular camera used
during inference would need to have exact parameters as its
stereo counterpart used in training.
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Fig. 1: Proposed monocular visual odometry system.

Various attempts have been made to improve general-
ization of depth networks during training by embedding
camera parameters within neural networks [17]–[19]. Unfor-
tunately, such approaches would still require a high amount
of hardly obtainable diverse data. On the other hand, [20],
[21] enforce depth map consistency with known camera
height. In [20] authors estimate ground plane and formulate
a dense geometrical constraint to help recover the scale
during test time. However, they focus their method for scale
recovery of networks trained with monocular sequences, not
considering domain shift introduced by usage of different
camera during test time. In [21] online retraining is used
to align estimated and ground truth camera heights. This
should in theory adequately adjust network weights after
domain shift, but requires computationally expensive and
complicated training process for each new sensor combina-
tion. Note that it is possible to estimate metrically correct
trajectory, while only requiring knowledge of camera height
to infer scale [22]; however, such methods add additional
computational complexity of homography estimation and
assume local planarity of the ground plane, which can lead
to unreliable estimation due to sidewalks and other objects
in urban environments. Deep networks on the other hand can
address such anomalies.

In this paper, we propose a feature based monocular
odometry with deep depth predictions (MOFT) related to our
stereo solution SOFT2 [23] – currently the highest ranking
odometry on the KITTI dataset. We use deep depth prediction
to improve monocular robustness and enable estimation of
metrically scaled trajectories. Unlike previous works [11],
[13], [14], we develop the method to be robust with regards
to perturbations in camera intrinsics and extrinsics. The main
contributions of the proposed approach are as follows:

• a monocular hybrid VO system with modified mul-
tihypothesis matcher with perspective correction [23]
leveraging deep depth for fast and accurate matching,
requiring only two images to estimate a correctly scaled
relative camera pose

• a domain shift adaptation algorithm based on default
camera height, allowing our method to generalize well
for different vehicle–camera setups

• evaluation on the KITTI and KITTI-360 datasets show-
ing competitive results and in most cases outperforming
other state-of-the-art stereo and monocular methods.

II. PROPOSED HYBRID MONOCULAR ODOMETRY

In this section we describe our proposed monocular VO
system and our approach for domain shift adaptation. We
assert that single-image depth prediction can enhance monoc-
ular feature-based VO on three levels: (i) feature matching,
(ii) outlier rejection, and (iii) scale aware translation opti-
mization. We modify our MHPC matcher proposed in [23]
for monocular sequences, while using depth predictions for
faster and more accurate matching. Compared to other state-
of-the-art approaches, our matcher naturally detects plenty
of ground plane features, which enables accurate and robust
translation optimization without scale drift that plagues many
monocular methods. In [4], [24] authors use loop-closure and
bundle adjustment to reduce accumulated scale-drift, while
our method functions like a pure odometry, requiring only
two images to estimate the relative camera pose (we do not
use any kind of multi-frame optimization). Our proposed
pipeline is depicted in Fig. 1

Afterwards, we propose a domain shift adaptation algo-
rithm for our monocular hybrid VO, allowing our method to
generalize well for different car/camera setups. In particular,
we consider most frequent changes of camera parameters in
the context of road vehicles: camera height, camera pitch,
focal length and principal point. We notice that, for points
in the close vicinity of the camera, such domain shift causes
a constant bias in the neural network depth prediction on
the ground plane. This bias can be calculated via the known
camera height and used to refine the depth prediction before
its usage in front-end tracking and back-end optimization.
Finally, similarly to other hybrid methods [11], in this work
we use Monodepth2 [15] inspired architecture for depth pre-
diction. We train our network in the self-supervised manner
with the stereo sequences, thus allowing metrically correct
translation optimization.

A. MOFT front-end

Sparse feature-based methods rely heavily on accurate fea-
ture matching across adjacent frames. To have robust rotation
and translation estimation a distinctive set of features is
required. Distant features exhibit motion in the image plane
only during rotational movement and influence significantly
estimation of the rotational part of the motion. In order
to accurately resolve the translational part of the motion,
features that are relatively close to the vehicle should be



matched with high accuracy since these features have higher
parallax during translational motion.

Additionally, it would be beneficial for the system to
know which features reside on the ground plane. Depth
uncertainty is commonly highest on non-Lambertian surfaces
and moving objects [11], which do not exist on the ground
plane. Furthermore, we argue that the deep network exhibits
best generalization ability exactly for ground plane parts of
the image, since other image regions can contain objects and
scenes unseen in the training set, which often lead to spurious
depth predictions.

The multiple hypotheses perspective correction (MHCP)
matcher, presented in [23], was developed for our stereo
visual odomety SOFT2 and relied on stereo image pairs.
In this paper we present the monocular version that relies
on a pair of sequential images and the depth predicted
from the deep network. In the following we describe the
monocular MHCP matcher, while the pseudocode is given
in Algorithm 1. Firstly, we detect distinctive features with
standard Shi-Thomasi corner detector [25]. We select 2
strongest corners for each 50 × 50 pixels large bin in the
image. With depth map D predicted by the deep network,
we calculate surface normals for each feature. Given that, by
searching for features with normals that are perpendicular to
the camera motion, we can establish possible candidates for
ground-plane futures.

Features detected in current frame with coordinates (u, v),
as well as points in their neighborhoods, i.e., points {(u −
1, v − 1), (u, v − 1), ..., (u+ 1, v + 1)}, are projected to 3D
space with the following equation:

P (u, v) =

(u− cx) · D(u,v)
fx

(v − cy) · D(u,v)
fy

D(u, v)

 , (1)

where P (u, v) refers to the 3D coordinates of the detected
feature (u, v), with (fx, fy), (cx, cy) being corresponding
camera focal length and principal point parameters. Similarly
to [20], for each detected feature we create a set of normals
from vectors that form a 90-degree angle when projected to
image coordinates, Si = {(P (u+1, v)−P (u, v))×(P (u, v+
1)− P (u, v)), ...}, where i represents index of the feature.

Finally, we average to estimate the surface normal ni:

ni =

∑
j nj/||nj ||2
|Si|

, (2)

where nj is a j-th element of set Si. We use 8 points from
the immediate neighborhood, which gives 4 combinations
of orthogonal vectors in the image plane. Ground points in
automotive scenarios are generally orthogonal to the camera
motion and we classify the i’th feature as a ground point
candidate if |αi| > αmin, where

αi = arccos(ni · ť) (3)

and ť refers to normalized camera translation vector between
the current and previous frame. As this is unknown, we
initialize it with the constant velocity model, which is

Algorithm 1 Mono MHPC matcher

Require: Images I, I−; odometry from the previous step
(Ř, ť); predicted depths D.

Ensure: Matched features M, ground plane matches G
1: Detect strong and evenly distributed features:
F ← get features(I)

2: for i = 1 : |F| do
3: calculate ni by Eq.(2)
4: if |arccos(ni · ť)| > αmin then
5: Features get two hypothetical patch transforms:

F ′i ←
{

gnd tf(Fi, Ř, ť, D),norm tf(Fi, Ř, ť, D)
}

6: else
7: F ′i ← norm tf(Fi, Ř, ť, D)
8: end if
9: Compute NCC near the projection:

(F−,ncc)← local ncc(I−,F ′
i
, Ř, ť, D)

10: (ncc)← sort(ncc)
11: diff scores← diff(ncc)
12: k ← find index(diff scores > diff th)
13: if k > 10 || k = ∅ then
14: Mi ← ∅
15: else
16: Select the match with the highest score:

Mi ← {Fi,F−(&max(ncc))}
17: if ground hypothesis(Mi) then
18: Gi =Mi

19: end if
20: end if
21: end for

sufficiently accurate in automotive localization. After we
establish whether feature is a possible ground point, we
proceed with our feature matching strategy.

For each feature classified as a candidate ground point,
we generate patch predictions based on two hypotheses:
feature is either on the ground plane or not. When generating
predictions for the ground plane hypothesis we assume
orthogonality of the patch normal and camera motion vector.
Otherwise, we assume that the patch resides on a plane with
the normal vector pointing towards the camera. Note that
we generate patch predictions for both hypotheses only if
the feature is classified as a candidate ground point, i.e,
we do not generate patch predictions for the ground plane
hypothesis if features failed the test given by (3). This greatly
reduces the complexity of the original MHPC matcher.

Patch predictions are correlated in positions within a
narrow envelope around projection of the predicted point in
the previous image via normalized cross correlation (NCC).
If there is no significant difference between the highest 10
scores, we classify feature as ambiguous and discard it.
Otherwise, we select the match with the best overall score.
In case of features within the candidate ground point set,
we classify them as ground points G if the higher NCC
score comes from the ground plane hypothesis. Thus, to be
classified as a ground point, feature needs to pass both the



depth and photometric consistency checks.
To summarize, we use predicted depth in multiple stages

in order to enhance the matcher accuracy, robustness, and
decrease computational complexity. Our original MHPC
matcher computes ground plane 3D points via the intersec-
tion of the feature back-projected ray with the ground plane,
which requires expensive homography estimation. Predicted
depth allows us to compute 3D points in a simple manner as
in (1). On top of that, depth information enables significant
reduction of the area where detected feature may reside in
the previous image. Other monocular methods either track
features across multiple frames or search along the entire
epipolar line, which increases the cost notably and creates
spurious matches. Finally, depth in the immediate neigh-
borhood of the feature is used as an additional constraint
in the classification of the ground plane features. Decision
based on photometric constraint alone sometimes leads to
false classifications [23]. By inclusion of depth information,
we classify ground futures more reliably leading to better
performance in the back-end optimization.

B. MOFT back-end

With the set of correspondences {(xi, x′i)}Ni=1 established
during front-end tracking, we seek to optimize the rotation
and metrically scaled translation of the camera. However,
first we want to detect features with spurious matches and
inconsistent depth predictions. For this purpose, we use the
difference in 3D space to quantify feature uncertainty

U(xi) = ||π−1(x′i, D(x′i))− Řπ−1(xi, D(xi)) + ť||22, (4)

where π represents projection operator, with π−1 functioning
as in (1) and (Ř, ť) initialized with a constant velocity model.
Features that do not satisfy a threshold are classified as
outliers and removed from set of active features, obtaining
M∗ and G∗. Note that inclusion of depths D(x′i) and D(xi)
creates a constraint which enforces consistency between the
assumed camera motion and depths predicted with the deep
network. This, in addition to detection of false matches,
identifies features on moving vehicles that, even when cor-
rect, negatively impact the estimation process. Removal of
such matches increases robustness and greatly decreases the
computational complexity during RANSAC iterations in the
subsequent optimization.

With having outliers removed, we proceed with our
SOFT2 approach for rotation estimation, where we iteratively
estimate the essential matrix within a RANSAC framework.
The essential matrix is parameterized in the following way

E(ξ) = E(α, β, γ, θ, φ) = R(α, β, γ)[t̂(θ, φ)]×, (5)

where (α, β, γ) are the Euler angles and (θ, φ) are spherical
coordinates of the translation vector. We formulate our
optimization function as minimization of point-to-epipolar-
line distances and the objective function is written as follows

min
R,t̂

∑
i

d2 (xi, l
′
i(ξ)) + d2 (x′i, li(ξ)) , (6)

where d(x, l) represents the point-to-epipolar-line distance,
l′i(ξ) = E(ξ)>x′i and li(ξ) = E(ξ)xi are epipolar lines
associated to points x′i and xi in the previous and current
view, respectively. We use all feature matches which survive
the outlier rejection procedure. The objective function is non-
linear and thus optimized with the Levenberg-Marquardt al-
gorithm within a RANSAC framework. Note that translation
parameters are also optimized, but only up to scale.

Afterwards, we seek to optimize metrically correct transla-
tion parameters. Optimization is formulated as minimization
of the reprojection error

e(xi, x
′
i) = xi − π(Rπ−1(x′i, D(x′i)) + t), (7)

where rotation matrix R is already calculated in the previous
step within the essential matrix estimation, while t is initial-
ized with an up to scale translation vector t̂ estimated in the
same step. We minimize the symmetric squared reprojection
error for all ground plane features that survived the outlier
rejection

min
t

∑
i

σ−2i (e(xi, x
′
i)

T e(xi, x
′
i)+e(x′i, xi)

T e(x′i, xi)), (8)

with σ2
i being covariance proportional to the feature depths.

Inclusion of the predicted depth D within optimization
allows us to finally estimate metrically scaled translation
vector. We use only active ground plane features for trans-
lation optimization due to, as previously mentioned, low
uncertainty of the depth prediction on the ground plane.

C. Camera height alignment

Deep learning enhanced VO and V-SLAM algorithms
can generalize well across different environments, due to
large amount of data available for self-supervised training.
However, generalization across different camera models has
proven to be extremely difficult [18]. In this paper we
propose an approach for alignment of estimated and ground
truth camera height, which enables our algorithm to achieve
state-of-the-art results even with different camera parameters
than on the training sequences.

As mentioned earlier, depth prediction generalizes well for
the ground plane with respect to the environmental factors. In
comparison, here we focus on changes in the camera param-
eters for automotive scenarios that would affect predicted
depth map, i.e., the camera height, focal length, vertical
principal point position and camera pitch. We assert that a
shift in the stated intrinsic and extrinsic parameters causes a
constant bias in the ground plane depth prediction. We show
that for nearby ground points, this can be parameterized as
a constant scale factor, without significant degradation to the
VO performance. Note that we assume that these changes
are within reasonable boundaries, i.e., they do not heavily
distort the scene appearance.

In order to estimate this scale factor, we choose a sequence
of N frames with clearly visible ground plane without
significant perturbations. For each frame we project all points
to 3D space using (1), and then we calculate normals and
classify points as ground points as in (3). Unlike [20], which



TABLE I: Results for the KITTI Odometry sequences (M – monocular, S – stereo, and D – using depth prediction networks)

01 02 06 08 09 10
trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

DSO [5] M 9.17 - 114 - 42.2 - 188 - 28.1 - 24.0 -
ORB-SLAM [1] M 107.57 0.89 10.34 0.26 14.56 0.26 11.46 0.28 9.30 0.26 2.57 0.32

S-DSO [26] S 1.43 0.09 0.78 0.21 0.67 0.20 0.98 0.25 0.98 0.18 0.49 0.18
S-LSD-VO [27] S 2.13 0.37 1.09 0.37 1.28 0.43 1.24 0.38 1.22 0.28 0.75 0.34

ORB-SLAM2 [24] S 1.44 0.19 0.77 0.28 0.89 0.27 1.03 0.31 0.86 0.25 0.62 0.29
OV2-SLAM [28] S 3.70 0.29 0.79 0.22 1.13 0.28 1.11 0.31 0.96 0.20 0.52 0.18

DF-VO [29] M + D 56.76 13.93 2.38 0.39 1.03 0.30 1.60 0.32 2.61 0.29 2.29 0.37
DVSO [14] M + D 1.18 0.11 0.84 0.22 0.71 0.20 1.03 0.25 0.83 0.21 0.74 0.21
D3VO [11] M + D 1.07 - 0.80 - 0.67 - 1.00 - 0.78 - 0.62 -

MOFT (Ours) M + D 0.90 0.16 0.74 0.24 0.73 0.25 1.05 0.27 0.69 0.18 0.84 0.26

uses median of heights calculated from a set of ground
points, we seek to find the dominant ground plane. This
allows us to filter out points which would generate inaccurate
height estimations due to violating the ideal plane assump-
tion. Given that, we minimize point-to-plane distances

min
nj ,hj

∑
i

|nTj Pi + hj |
||nj ||

(9)

within a RANSAC framework, where nj refers to the ground
plane normal at j’th frame. We estimate the plane with
a 3 point hypothesis and classify points as inliers if the
distance is within 0.01 m. Each point is given a score which
is proportional to the inverse depth. Finally, we choose the set
of inliers with the highest cumulative score. This encourages
the inclusion of nearby points when choosing inliers for the
dominant ground plane calculation.

In the end, we estimate the camera height hj for all inliers
using (9) and the scale factor is then calculated as

λj = h∗/hj , (10)

where h∗ represents known camera height. We repeat this
process for every frame in the sequence, obtaining {λj}Nj=1.
Outliers are filtered out via median absolute deviation and the
final parameter λ is calculated as the mean of the surviving
inliers.

After obtaining the ground plane bias parameters, our
odometry is ready to be run on sequences with different
camera models compared to the training dataset. To achieve
this, we adjust depths of the ground plane features during
test time in the following manner

z′ = λz. (11)

Furhtermore, robust feature matching also requires accurate
depth predictions for those features that are not on the ground
plane. We noticed that these depths are largely unaffected by
camera height change and camera rotation, thus we adjust
the depths of these features with a simple focal length
normalization

z′ =
fy
f∗y
z, (12)

where f∗y represents focal length of the camera used in the
training sequences.
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Fig. 2: Estimated trajectories on KITTI Odometry sequences

III. EXPERIMENTAL EVALUATION

We evaluated MOFT on the KITTI [30] and KITTI-360
[31] datasets. First, we compared our method on the KITTI
sequences to state-of-the-art monocular, stereo and hybrid
methods methods. Afterwards, we tested our generalization
ability for different camera setups on the KITTI-360 dataset
and compared it to the stereo ORB-SLAM2 as it has a
different camera setup in both intrinsic and extrinsic camera
parameters (with respect to the ground plane).

A. KITTI dataset

We trained the self-supervised depth prediction on the
Eigen split [32] and used Monodepth2 [15] architecture to
achieve fair comparison with other hybrid methods. Our
model was trained with stereo sequences in order to estimate
the metric scale. The network was trained in PyTorch [33],
with inference implemented in its C++ API to decrease
execution time and enable integration with the rest of our
system. We ran the deep network in parallel with front-end
tracking and back-end optimization, thus allowing for real-
time execution. We tested the method on sequences 01, 02,
06, 08, 09 and 10 of the KITTI Odometry benchmark, as
they are not contained within the Eigen split. As proposed
in [30], we used relative translational (trel) and rotational
error (rrel) for evaluation.

In Table I we show results for the KITTI sequences.
For open source implementations of [1], [24], [28] we used
the default parameters and turned off loop closure in the
SLAM methods [1], [24], [28] in order to focus on odometry
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Fig. 3: Estimated trajectories of the KITTI-360 Odometry sequences.

TABLE II: Results for the KITTI-360 Odometry sequences

MOFT ORB-SLAM2
trel rrel trel rrel

00 0.453 0.156 0.333 0.149
02 0.548 0.211 0.584 0.226
03 0.682 0.149 0.486 0.169
04 0.552 0.220 0.515 0.216
05 0.567 0.250 0.459 0.247
06 0.510 0.167 0.523 0.177
07 0.682 0.141 5.075 0.973
09 0.774 0.180 1.073 0.184
10 1.457 0.234 1.730 0.434

and achieve fair comparison. Both direct [5] and feature-
based [1] monocular methods showed high degree of scale
drift, which is reflected in the translational error. This, in
addition to the unknown absolute scale, makes these methods
dependent on fusion with another sensor. Monocular ORB-
SLAM [1] failed on the highway sequence 01 and showed
high scale drift on sequence 09, as can be seen in Fig. 2.
In comparison, deep depth prediction enabled our method to
estimate accurately the metrically scaled translation without
scale-drift, while being a purely monocular method at test
time. MOFT generally outperformed stereo and deep learn-
ing enhanced methods in the translational error, while having
comparatively weaker rotational error results. This is most
likely due to the current lack of multi-frame optimizations
which are often present in other approaches. In spite of that,
as a result of our matching strategy involving monocular
depth estimation, we are able to achieve superior translational
error results.

We are also the first hybrid method that achieves compara-
ble and in some cases better results than D3VO and DVSO.
We do not present results for other hybrid methods, as they
achieve lesser accuracy, but a summary can be found in [34].

B. KITTI-360

Here we focus on the generalization ability of our method
with respect to camera intrinsic and extrinsic parameters,
which is a frequent scenario in autonomous driving. We
selected the KITTI-360 dataset since it has similar environ-
ment compared to KITTI, on which we trained the depth
prediction network, but uses a camera with significantly

different focal length and principal point parameters, while
being mounted on a car at different height and with a slight
downward camera inclination of 5 degrees. Even though the
scene context is not dramatically changed, the change of the
camera parameters has a considerable effect on the predicted
depth maps. Here, we show that our camera height alignment
procedure enables accurate metrically-scaled estimation un-
der such circumstances.

In order to perform the camera height alignment, we chose
a segment of the sequence 03 with a wide and highly planar
road scene to calculate the scale factor λ. We tested our
method and compared it to stereo ORB-SLAM2. We did not
compare the proposed approach with other hybrid methods,
e.g., [11], [14], since they do not report results that include
variations of camera parameters during test time. Results are
presented in Table II, where we can see that the results are on
par with ORB-SLAM2 and more than half sequences better.
Furthermore, in Fig. 3 we show the estimated trajectories,
before and after camera height alignment. The alignment
allowed us to estimate scaled trajectories correctly even in
the presence of the domain shift due to the different camera
parameters.

IV. CONCLUSION

In this paper we have presented a feature based monocular
odometry with deep depth predictions that is related to
our stereo odometry SOFT2 [23] – currently the highest
ranking odometry on the KITTI dataset. It is based on
feature tracking using monocular multihypothesis matcher
with perspective correction coupled with deep depth that
enables selection of quality ground plane features particularly
suitable for translation estimation. Using point-to-epipolar-
line error minimization we estimate first rotation and trans-
lation direction, which is followed then by deep depth aided
reprojection error minimization for estimating the metrically
correct trajectory. Additionally, we proposed a domain shift
adaptation for changes in the camera intrinsic and extrinsic
parameters, enabling the method to work when faced with
different vehicle–camera setup in test time. Results on the
KITTI and KITTI-360 datasets validated the approach and
showed competitive results and in majority of cases exceeded
state-of-the-art monocular and stereo approaches.
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